The strong Bishop-Phelps-Bollobás property

SHELDON DANTAS

UNIVERSITY OF VALENCIA, SPAIN

2016년도 대한수학회 봄 연구발표회

April 23th, 2016 Suwon, South Korea

DANTAS The strong Bishop-Phelps-Bollobás property

・ロト (同ト (ヨト (ヨト

DQ P

SHELDON DANTAS

Table of contents

- 1 Definitions & Some Results
- 2 sBPBp
- 3 Uniform sBPBp
- 4 Uniform sBPBp vs sBPBp
- **5** ...and now...

《日》《聞》《臣》《臣》 臣 '오�?

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Definitions & Some Results

Definition - Norm Attaining Functional

We say that a linear functional $x^* \in X^*$ attains its norm if there exists $x_0 \in S_X$ such that $|x^*(x_0)| = ||x^*||$. The set of all norm attaining functionals is denoted by NA(X).

《ㅁ〉《圖〉《트〉《트〉 트 '이익()

Definitions & Some Results

Definition - Norm Attaining Functional

We say that a linear functional $x^* \in X^*$ attains its norm if there exists $x_0 \in S_X$ such that $|x^*(x_0)| = ||x^*||$. The set of all norm attaining functionals is denoted by NA(X).

James theorem, 1957

A Banach space X is **reflexive** if and only if every bounded linear functional attains its norm.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ●

Definitions & Some Results

Bishop-Phelps Theorem, 1961

Every element in X^* can be approximated by a norm attaining linear functional. In other words, $\overline{NA(X)} = X^*$.

▲□ ▶ ▲ 酉 ▶ ▲ 重 ▶ ▲ ■ ♪ ♪ ♪ ♪ ♪ ♪

Definitions & Some Results

Bishop-Phelps Theorem, 1961

Every element in X^* can be approximated by a norm attaining linear functional. In other words, $\overline{NA(X)} = X^*$.

Question (Bishop-Phelps)

Is it true for operators?

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

<ロト < 同ト < ヨト < ヨト

DQ P

Definitions & Some Results

Definition - Norm Attaining Operators

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_0 \in S_X$ such that $||T(x_0)|| = ||T||$. The set of all norm attaining operators is denoted by NA(X, Y).

- 4 ロ ト 4 団 ト 4 匡 ト - 匡 - りへぐ

Definitions & Some Results

Definition - Norm Attaining Operators

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_0 \in S_X$ such that $||T(x_0)|| = ||T||$. The set of all norm attaining operators is denoted by NA(X, Y).

Lindenstrauss' counterexample, 1963

There exists a Banach space X such that

$$\overline{NA(X,X)} \neq \mathcal{L}(X,X),$$

showing that the Bishop-Phelps result **does not** hold for bounded linear operators.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

<ロト < 同ト < ヨト < ヨト

Definitions & Some Results

In 1970, Bollobás proved a very useful theorem to study numerical radius of operators:

Definitions & Some Results

In 1970, Bollobás proved a very useful theorem to study numerical radius of operators:

Bishop-Phelps-Bollobás theorem, 1970 (Martín's version, 2014)

Let X be a Banach space and $\varepsilon \in (0, 2)$. Given $x \in B_X$ and $x^* \in B_{X^*}$ with

$$|x^*(x)| > 1 - \frac{\varepsilon^2}{2},$$

there are elements $y \in S_X$ and $y^* \in S_{X^*}$ such that

$$||y^*|| = y^*(y) = 1, ||y - x|| < \varepsilon \text{ and } ||y^* - x^*|| < \varepsilon.$$

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

イロト イポト イヨト イヨト

SOR

Definitions & Some Results

In 1970, Bollobás proved a very useful theorem to study numerical radius of operators:

Bishop-Phelps-Bollobás theorem, 1970 (Martín's version, 2014)

Let X be a Banach space and $\varepsilon \in (0, 2)$. Given $x \in B_X$ and $x^* \in B_{X^*}$ with

$$|x^*(x)| > 1 - \frac{\varepsilon^2}{2},$$

there are elements $y \in S_X$ and $y^* \in S_{X^*}$ such that

$$||y^*|| = y^*(y) = 1, ||y - x|| < \varepsilon \text{ and } ||y^* - x^*|| < \varepsilon.$$

Observation

It is **not** expected that there exists a Bishop-Phelps-Bollobás theorem version for bounded linear operators.

200

Definitions & Some Results

In 2008, Acosta, Aron, García and Maestre introduced the following property:

- + ロ > + 個 > + 注 > + 注 > - 注 - りへで

Definitions & Some Results

In 2008, Acosta, Aron, García and Maestre introduced the following property:

Definition - Bishop-Phelps-Bollobás property (BPBp)

A pair of Banach spaces (X, Y) is said to have the **BPBp** if for every $\varepsilon \in (0, 1)$, there exists $\eta(\varepsilon) > 0$ such that if $T \in S_{\mathcal{L}(X,Y)}$ and $x \in S_X$ satisfy

$$||T(x)|| > 1 - \eta(\varepsilon),$$

there exist $S \in S_{\mathcal{L}(X,Y)}$ and $x_0 \in S_X$ such that

 $||S(x_0)|| = 1, ||x_0 - x|| < \varepsilon \text{ and } ||S - T|| < \varepsilon.$

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

-

SOR

Definitions & Some Results

There are many examples of classical Banach spaces satisfying this property:

Definitions & Some Results

There are many examples of classical Banach spaces satisfying this property:

- $(\mathbb{K}^n, \mathbb{K}^m)$ for $n, m \in \mathbb{N}$,
- $(\ell_1, C(K))$ for a compact Hausdorff topological space K,
- $(L_p(\mu), c_0)$ for every 1 ,
- (H_1, H_2) whenever H_1 and H_2 are Hilbert spaces.
- $(C_0(L), L_p(\mu))$ for every Hausdorff locally compact space L and $1 \le p < \infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ●

sBPBp

A Banach space X is **uniformly convex** if for every $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that

$$x, y \in S_X$$
 and $||x - y|| \ge \varepsilon \Rightarrow \left\| \frac{x + y}{2} \right\| < 1 - \delta(\varepsilon).$

イロト イラト イヨト イヨト ヨー 今へで The strong Bishop-Phelps-Bollobás property

SHELDON DANTAS

sBPBp

In 2014, Kim and Lee proved that

Kim-Lee Theorem

A Banach space X is **uniformly convex** if and only if given $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $x^* \in S_{X^*}$ and $x \in B_X$ satisfy

$$|x^*(x)| > 1 - \eta(\varepsilon),$$

there is $x_0 \in S_X$ such that

$$|x^*(x_0)| = 1$$
 and $||x_0 - x|| < \varepsilon$.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

イロト イポト イヨト イヨト

ъ

DQ P

sBPBp

In 2014, Kim and Lee proved that

Kim-Lee Theorem

A Banach space X is **uniformly convex** if and only if given $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $x^* \in S_{X^*}$ and $x \in B_X$ satisfy

$$|x^*(x)| > 1 - \eta(\varepsilon),$$

there is $x_0 \in S_X$ such that

$$|x^*(x_0)| = 1$$
 and $||x_0 - x|| < \varepsilon$.

Question

Is it true for operators?

SHELDON DANTAS

イロト イヨト イヨト The strong Bishop-Phelps-Bollobás property

DQ P

sBPBp

We define a property where the real number η depends not only of ε but also of a given bounded linear operator T:

sBPBp

We define a property where the real number η depends not only of ε but also of a given bounded linear operator T:

Definition of the sBPBp

We say that the pair of Banach spaces (X, Y) has the **strong BPBp** if given $\varepsilon \in (0, 1)$ and $T \in S_{\mathcal{L}(X,Y)}$, there exists $\eta(\varepsilon, T) > 0$ such that whenever $x_0 \in S_X$ satisfies

$$||T(x_0)|| > 1 - \eta(\varepsilon, T),$$

there exists $x_1 \in S_X$ such that

$$||T(x_1)|| = 1$$
 and $||x_1 - x_0|| < \varepsilon$.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

<ロト < 同ト < ヨト < ヨト

sBPBp

Theorem 1

Let X be a finite dimensional Banach space. Then the pair (X, Y) has the sBPBp for all Banach spaces Y.

- イロマ (四マ) (日マ (日)) (日)

Definitions & Some Results \mathbf{sBPBp} Uniform \mathbf{sBPBp} Uniform \mathbf{sBPBp} vs \mathbf{sBPBp} ...and now...

sBPBp

Theorem 1

Let X be a finite dimensional Banach space. Then the pair (X, Y) has the sBPBp for all Banach spaces Y.

Theorem 2

Let X be a uniformly convex Banach space. Then the pair (X, Y) has the sBPBp for compact operators for all Banach spaces Y.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

SQR

sBPBp

Corollary 3

If X is a uniformly convex Banach space and Y is a Banach space with the Schur's property, then the pair (X, Y) has the sBPBp. In particular, the pair (ℓ_2, ℓ_1) has the sBPBp.

《日》《卽》《臣》《臣》 臣 '오�?

Definitions & Some Results \mathbf{sBPBp} Uniform \mathbf{sBPBp} Uniform \mathbf{sBPBp} vs \mathbf{sBPBp} ...and now...

sBPBp

Corollary 3

If X is a uniformly convex Banach space and Y is a Banach space with the Schur's property, then the pair (X, Y) has the sBPBp. In particular, the pair (ℓ_2, ℓ_1) has the sBPBp.

Corollary 4

If X is a uniformly convex Banach space and Y is a finite dimensional Banach space, then the pair (X, Y) has the sBPBp.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

- ロ ト - 4 同 ト - 4 回 ト - -

DQ P

sBPBp

Counterexample

If X is not reflexive, then the pair (X, Y) can not have the sBPBp by the James Theorem.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

(日) (同) (日) (日) (日)

DQ C

1

Uniform sBPBp

Definition

We say that a pair of Banach space (X, Y) has the **uniform sBPBp** if given $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $T \in S_{\mathcal{L}(X,Y)}$ and $x_0 \in S_X$ satisfy

$$||T(x_0)|| > 1 - \eta(\varepsilon),$$

there exists $x_1 \in S_X$ such that

$$||T(x_1)|| = 1$$
 and $||x_1 - x_0|| < \varepsilon$.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

イロト イボト イヨト イヨト

DQ P

Uniform sBPBp

Definition

We say that a pair of Banach space (X, Y) has the **uniform sBPBp** if given $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $T \in S_{\mathcal{L}(X,Y)}$ and $x_0 \in S_X$ satisfy

$$||T(x_0)|| > 1 - \eta(\varepsilon),$$

there exists $x_1 \in S_X$ such that

$$||T(x_1)|| = 1$$
 and $||x_1 - x_0|| < \varepsilon$.

The **Kim-Lee theorem** says that the pair (X, \mathbb{K}) has the uniform sBPBp if and only if X is a uniformly convex Banach space.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

-

SOR

Uniform sBPBp

Counterexample

Consider
$$X = \ell_2^2(\mathbb{K})$$
 and $Y = \ell_\infty^2(\mathbb{K})$.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

€ 990

Uniform sBPBp

Counterexample

Consider $X = \ell_2^2(\mathbb{K})$ and $Y = \ell_\infty^2(\mathbb{K})$. Suppose that there exists $\eta(\varepsilon) > 0$ with the above property.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

в

Uniform sBPBp

Counterexample

Consider $X = \ell_2^2(\mathbb{K})$ and $Y = \ell_\infty^2(\mathbb{K})$. Suppose that there exists $\eta(\varepsilon) > 0$ with the above property. Let $T: X \to Y$ defined by

$$T(x,y) := \left(\left(1 - \frac{1}{2}\eta(\varepsilon)\right)x, y \right).$$

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

イロト イヨト イヨト

в

Uniform sBPBp

Counterexample

Consider $X = \ell_2^2(\mathbb{K})$ and $Y = \ell_\infty^2(\mathbb{K})$. Suppose that there exists $\eta(\varepsilon) > 0$ with the above property. Let $T: X \to Y$ defined by

$$T(x,y) := \left(\left(1 - \frac{1}{2}\eta(\varepsilon)\right)x, y \right).$$

So:

 $\bullet \ \|T\| = 1,$

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

<ロト < 同ト < ヨト < ヨト

Э

Uniform sBPBp

Counterexample

Consider $X = \ell_2^2(\mathbb{K})$ and $Y = \ell_\infty^2(\mathbb{K})$. Suppose that there exists $\eta(\varepsilon) > 0$ with the above property. Let $T: X \to Y$ defined by

$$T(x,y) := \left(\left(1 - \frac{1}{2}\eta(\varepsilon)\right)x, y \right).$$

So:

•
$$||T|| = 1,$$

• $||T(e_1)||_{\infty} > 1 - \eta(\varepsilon),$

The strong Bishop-Phelps-Bollobás property

イロト イヨト イヨト

в

DQ C

SHELDON DANTAS

Uniform sBPBp

Counterexample

Consider $X = \ell_2^2(\mathbb{K})$ and $Y = \ell_\infty^2(\mathbb{K})$. Suppose that there exists $\eta(\varepsilon) > 0$ with the above property. Let $T: X \to Y$ defined by

$$T(x,y) := \left(\left(1 - \frac{1}{2}\eta(\varepsilon)\right)x, y \right).$$

So	

$$z = \lambda e_2$$
 for some $|\lambda| = 1$

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

в

Uniform sBPBp

Counterexample

Consider $X = \ell_2^2(\mathbb{K})$ and $Y = \ell_\infty^2(\mathbb{K})$. Suppose that there exists $\eta(\varepsilon) > 0$ with the above property. Let $T: X \to Y$ defined by

$$T(x,y) := \left(\left(1 - \frac{1}{2}\eta(\varepsilon)\right)x, y \right).$$

So:

•
$$||T|| = 1,$$

• $||T(e_1)||_{\infty} > 1 - \eta(\varepsilon),$

• every $z \in S_X$ such that $||T(z)||_{\infty} = 1$ assumes the form $z = \lambda e_2$ for some $|\lambda| = 1$.

But, in this case, we have $||e_1 - z||_2 = \sqrt{2}$.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

<ロト < 同ト < ヨト < ヨト

Э

nan

Uniform sBPBp

All the following pairs fail to have the uniform sBPBp:

- $\begin{array}{ll} (1) & (\ell_2^2, \ell_\infty^2), \\ (2) & (\ell_2^2, \ell_2^2), \\ (3) & (\ell_p^2, \ell_q^2) \text{ for } 1$
- (9) (Y, Y), where dim(Y) = 2.

▲ロト ▲同ト ▲臣ト ▲臣ト 三臣 - のへで

Uniform sBPBp vs sBPBp

Next, we use the negative results about the uniform sBPBp to get negative results about the sBPBp.

・ 1 マート ・ 山 マート・ 山 マート・

Uniform sBPBp vs sBPBp

Next, we use the negative results about the uniform sBPBp to get negative results about the sBPBp.

Theorem 5

If the pair (X, Y) fails the uniform sBPBp, then the pair $(\ell_2(X), \ell_{\infty}(Y))$ fails the sBPBp.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

イロト イポト イヨト イヨト

DQ P

Uniform sBPBp vs sBPBp

In particular, the pairs $(\ell_2, \ell_{\infty}(Z))$ fail the sBPBp when (a) $Z = \ell_{\infty}^2$, ℓ_2^2 , ℓ_1^2 , C[0, 1], ℓ_q^2 for $2 \le q < \infty$ in both real and complex cases and

(b)
$$Z = \ell_q^2$$
, ℓ_q^2 for $1 \le q \le 2$ in the real case.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わらぐ

Uniform sBPBp vs sBPBp

Theorem 6

The following holds.

- (i) The pair (ℓ_p, ℓ_q) has the sBPBp whenever $1 \le q .$
- (ii) The pair (ℓ_p, ℓ_q) fails the sBPBp whenever 1 .

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

...and now...

...we are studying the following property:

The uniform strong Bishop-Phelps-Bollobás point property

We say the a pair (X, Y) of Banach spaces has the **uniform sBPBp-p** if given $\varepsilon > 0$, there exists some $\eta(\varepsilon) > 0$ such that whenever $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x_0 \in S_X$ satisfy

$$||T(x_0)|| > 1 - \eta(\varepsilon),$$

there exists $S \in \mathcal{L}(X, Y)$ with ||S|| = 1 such that

$$||S(x_0)|| = 1$$
 and $||S - T|| < \varepsilon$.

SHELDON DANTAS The strong Bishop-Phelps-Bollobás property

イロト イボト イヨト イヨト

SOR

Thank you very much for your attention