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Definitions & Some Results

Definition - Norm Attaining Functional

We say that a linear functional x* € X* attains its norm if
there exists zg € Sx such that |z*(x¢)| = ||z*|. The set of all
norm attaining functionals is denoted by NA(X).
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Definitions & Some Results

Definition - Norm Attaining Functional

We say that a linear functional x* € X* attains its norm if
there exists zg € Sx such that |z*(x¢)| = ||z*|. The set of all
norm attaining functionals is denoted by NA(X).

James theorem, 1957

A Banach space X is reflexive if and only if every bounded
linear functional attains its norm.
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Bishop-Phelps Theorem, 1961

Every element in X* can be approximated by a norm attaining
linear functional. In other words, NA(X) = X*.
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Bishop-Phelps Theorem, 1961
Every element in X* can be approximated by a norm attaining
linear functional. In other words, NA(X) = X*.
Question (Bishop-Phelps)
Is it true for operators?
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Definitions & Some Results

Definition - Norm Attaining Operators

We say that a bounded linear operator T' € L£(X,Y) attains its
norm if there exists xg € Sx such that ||T(x¢)|| = ||T||- The set
of all norm attaining operators is denoted by NA(X,Y).
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Definitions & Some Results

Definition - Norm Attaining Operators

We say that a bounded linear operator T' € L£(X,Y) attains its
norm if there exists xg € Sx such that ||T(x¢)|| = ||T||- The set
of all norm attaining operators is denoted by NA(X,Y).

Lindenstrauss’ counterexample, 1963

There exists a Banach space X such that
NA(X, X) # L(X,X),

showing that the Bishop-Phelps result does not hold for
bounded linear operators.
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In 1970, Bollobés proved a very useful theorem to study
numerical radius of operators:
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Definitions & Some Results

In 1970, Bollobés proved a very useful theorem to study
numerical radius of operators:

Bishop-Phelps-Bollobés theorem, 1970 (Martin’s version, 2014)

Let X be a Banach space and ¢ € (0,2). Given z € Bx and

52

Ea
there are elements y € Sx and y* € Sx+« such that

|z*(x)] > 1 —

ly'l=v*(w) =1, |ly—=z[<e and [y*—2"| <e.
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In 1970, Bollobés proved a very useful theorem to study
numerical radius of operators:

Bishop-Phelps-Bollobés theorem, 1970 (Martin’s version, 2014)

Let X be a Banach space and ¢ € (0,2). Given z € Bx and

2
€
2 b
there are elements y € Sx and y* € Sx+« such that

|z*(x)] > 1 —

ly'l=y"(y) =1, [y—=zl]<e and |y*—2"||<e.

Observation

It is not expected that there exists a Bishop-Phelps-Bollobas

theorem version for bounded linear operators.

— _—

ORNGe

SHELDON DANTAS The strong Bishop-Phelps-Bollobas property



Definitions & Some Results

Definitions & Some Results sBPBp Uniform sBPBp Uniform sBPBp vs sBPBp

..and now...

In 2008, Acosta, Aron, Garcia and Maestre introduced the
following property:

SHELDON DANTAS

[m]

=

The strong Bishop-Phelps-Bollobas property

D¢



Definitions & Some Results sBPBp Uniform sBPBp Uniform sBPBp vs sBPBp

...and now...

Definitions & Some Results

In 2008, Acosta, Aron, Garcia and Maestre introduced the
following property:

Definition - Bishop-Phelps-Bollobés property (BPBp)

A pair of Banach spaces (X,Y) is said to have the BPBp if for

every ¢ € (0, 1), there exists n(¢) > 0 such that if T' € Sy(x y)
and xz € Sx satisfy

IT(2)]| > 1 =n(e),
there exist S € Sp(xy) and zo € Sx such that

|S(zo)|| =1, [lzo—z| <e and ||S—T| <e.
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this property:

There are many examples of classical Banach spaces satisfying
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Definitions & Some Results

There are many examples of classical Banach spaces satisfying
this property:
(K™, K™) for n,m € N,

(]

©

C(K)) for a compact Hausdorff topological space K,

[+]

(£,
(Lp(p), co) for every 1 < p < oo,

(Hy, H9) whenever Hy and Hs are Hilbert spaces.
(Co(L), Ly(p)) for every Hausdorff locally compact space L
and 1 < p < .

©

o &5 = = = 9ae
SHELDON DANTAS The strong Bishop-Phelps-Bollobas property



Definitions & Some Results sBPBp Uniform sBPBp Uniform sBPBp vs sBPBp
sBPBp

..and now

A Banach space X is uniformly convex if for every ¢ > 0,
there exists d(g) > 0 such that

Jer-so

z,y € Sx and Hx—y||>€=>H
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In 2014, Kim and Lee proved that

Kim-Lee Theorem

A Banach space X is uniformly convex if and only if given

e > 0, there exists n(e) > 0 such that whenever z* € Sx+ and
x € By satisfy

2" (@) > 1= n(e),
there is g € Sx such that

|*(x0)| =1 and ||zg —z| < e.
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sBPBp

In 2014, Kim and Lee proved that
Kim-Lee Theorem

A Banach space X is uniformly convex if and only if given

e > 0, there exists n(e) > 0 such that whenever z* € Sx+ and
x € By satisfy

2" (@) > 1= n(e),
there is g € Sx such that

|*(x0)| =1 and ||zg —z| < e.

Question

Is it true for operators?
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We define a property where the real number 7 depends not only
of € but also of a given bounded linear operator 7"
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We define a property where the real number 1 depends not only
of € but also of a given bounded linear operator 7"

Definition of the sBPBp

We say that the pair of Banach spaces (X,Y) has the strong
BPBp if given € € (0,1) and T' € Sg(xy), there exists
n(e, T) > 0 such that whenever 2y € Sx satisfies

[T (xo)|| > 1 =mn(e,T),

there exists x1 € Sx such that

IT(xz1)]| =1 and ||z — x| <e.
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Theorem 1

Let X be a finite dimensional Banach space. Then the pair
(X,Y) has the sBPBp for all Banach spaces Y.
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sBPBp

Let X be a finite dimensional Banach space. Then the pair
(X,Y) has the sBPBp for all Banach spaces Y.

Theorem 2

Let X be a uniformly convex Banach space. Then the pair

(X,Y) has the sBPBp for compact operators for all Banach
spaces Y.
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If X is a uniformly convex Banach space and Y is a Banach

space with the Schur’s property, then the pair (X,Y’) has the
sBPBp. In particular, the pair (¢2,¢;) has the sBPBp.
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sBPBp

Corollary 3

If X is a uniformly convex Banach space and Y is a Banach
space with the Schur’s property, then the pair (X,Y’) has the
sBPBp. In particular, the pair (¢2,¢;) has the sBPBp.

Corollary 4

If X is a uniformly convex Banach space and Y is a finite
dimensional Banach space, then the pair (X,Y’) has the sBPBp.
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Counterexample

If X is not reflexive, then the pair (X,Y) can not have the
sBPBp by the James Theorem.
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We say that a pair of Banach space (X,Y’) has the uniform

sBPBp if given € > 0, there exists n(e) > 0 such that whenever
T e SL(X,Y) and xg € Sx satisfy

1T (o)l > 1 =n(e),

there exists z1 € Sx such that

|IT(x1)]] =1 and ||z1 — x| < e.
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Uniform sBPBp

Definition

We say that a pair of Banach space (X,Y’) has the uniform
sBPBp if given € > 0, there exists n(e) > 0 such that whenever
T e S[,(X,Y) and zo € Sx satisfy

1T (z0)|| > 1 —mnle),
there exists 21 € Sx such that

|IT(x1)]] =1 and ||z1 — x| < e.

The Kim-Lee theorem says that the pair (X, K) has the
uniform sBPBp if and only if X is a uniformly convex Banach
space.
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Counterexample

Consider X = ¢%4(K) and Y = 2 (K).
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Counterexample

Consider X = /3(K) and Y = ¢2_(K). Suppose that there exists
n(e) > 0 with the above property.
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Consider X = /3(K) and Y = ¢2_(K). Suppose that there exists
n(e) > 0 with the above property. Let T : X — Y defined by

T(z,y) = ((1 - %n(a)) x,y) :
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Counterexample

...and now...

Consider X = /3(K) and Y = ¢2_(K). Suppose that there exists
n(e) > 0 with the above property. Let T : X — Y defined by

T(z,y) = ((1 - %n(a)) x,y) :
SO; 1T = 1,
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Counterexample

...and now...

Consider X = ¢2(K) and Y = ¢2 (K). Suppose that there exists
n(e) > 0 with the above property. Let T : X — Y defined by

T(z,y) = ((1 - %n(a)) x,y) :
So:

o Tl =1,
o IT(e)lloc > 1 =n(e),
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Consider X = 2(K) and Y = ¢2 (K). Suppose that there exists
n(e) > 0 with the above property. Let T : X — Y defined by

T(z,y) = ((1 - %n(a)) w,y) :
So:

o Tl =1,
o IT(e)lloc > 1 =n(e),

o every z € Sx such that | T(2)|lcc = 1 assumes the form
z = Xeg for some |\| = 1.
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Counterexample

Consider X = 2(K) and Y = ¢2 (K). Suppose that there exists
n(e) > 0 with the above property. Let T : X — Y defined by

T(z,y) = ((1—-%nkﬁ>azy)-
So:

o Tl =1,

o [T(en)lloc > 1 =n(e),

o every z € Sy such that |[T(z)]|cc = 1 assumes the form
z = Xeg for some |\| = 1.

But, in this case, we have ||e; — z||z = v/2
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Uniform sBPBp

All the following pairs fail to have the uniform sBPBp:
1) (63,¢0%),

( 2> *o0

(2) (6,6),

(3) (£2,02) for 1 < p < ¢ < o0.

(4) (6.6),

(5) (£3,02), for 1 < g <2.

(6) (B(R),(5(R)) for 1 < ¢ < oc.

(7) (512,( ), g( ))forl<p<2and1<g<2.
(8) (3,Cl0,1)),

(9) (Y,Y), where dim(Y) = 2.
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Next, we use the negative results about the uniform sBPBp to
get negative results about the sBPBp.
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(Lo(X

Next, we use the negative results about the uniform sBPBp to

get negative results about the sBPBp.

If the pair (X,Y) fails the uniform sBPBp, then the pair
), Lo (Y")) fails the sSBPBp.

SHELDON DANTAS

[m]

= _ —
The strong Bishop-Phelps-Bollobas property

RN Ge



Definitions & Some Results sBPBp Uniform sBPBp Uniform sBPBp vs sBPBp

Uniform sBPBp vs sBPBp

..and now

In particular, the pairs ({2, (Z)) fail the sBPBp when
(a) Z =12

o)

2 2, c,1], 62 for 2 < g < oo in both real
and complex cases and

(b) Z =12, £2 for 1 < q <2 in the real case.
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The following holds.

(i) The pair (¢p,¢,) has the sSBPBp whenever 1 < ¢ < p < oc.

ii e pair (£p, ails the s p whenever 1 < p < g < oo.
ii) Th ir (¢p,4q) fails the sSBPBp wh 1
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...and now...

...we are studying the following property:

The uniform strong Bishop-Phelps-Bollobéds point property

We say the a pair (X,Y") of Banach spaces has the uniform
sBPBp-p if given € > 0, there exists some 7n(e) > 0 such that
whenever 7' € L(X,Y) with ||T|| =1 and z € Sx satisfy

1T (o)l > 1 = n(e),
there exists S € £(X,Y) with ||S|| = 1 such that

|S(zo)| =1 and ||S—T| <e.
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Thank you very much

for your attention
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