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Definitions & Some Results

Definition - Norm Attaining Functional

We say that a linear functional x∗ ∈ X∗ attains its norm if
there exists x0 ∈ SX such that |x∗(x0)| = ‖x∗‖. The set of all
norm attaining functionals is denoted by NA(X).

James theorem, 1957

A Banach space X is reflexive if and only if every bounded
linear functional attains its norm.
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Definitions & Some Results

Bishop-Phelps Theorem, 1961

Every element in X∗ can be approximated by a norm attaining
linear functional. In other words, NA(X) = X∗.

Question (Bishop-Phelps)

Is it true for operators?
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Definitions & Some Results

Definition - Norm Attaining Operators

We say that a bounded linear operator T ∈ L(X,Y ) attains its
norm if there exists x0 ∈ SX such that ‖T (x0)‖ = ‖T‖. The set
of all norm attaining operators is denoted by NA(X,Y ).

Lindenstrauss’ counterexample, 1963

There exists a Banach space X such that

NA(X,X) 6= L(X,X),

showing that the Bishop-Phelps result does not hold for
bounded linear operators.
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Definitions & Some Results

In 1970, Bollobás proved a very useful theorem to study
numerical radius of operators:

Bishop-Phelps-Bollobás theorem, 1970 (Mart́ın’s version, 2014)

Let X be a Banach space and ε ∈ (0, 2). Given x ∈ BX and
x∗ ∈ BX∗ with

|x∗(x)| > 1− ε2

2
,

there are elements y ∈ SX and y∗ ∈ SX∗ such that

‖y∗‖ = y∗(y) = 1, ‖y − x‖ < ε and ‖y∗ − x∗‖ < ε.

Observation

It is not expected that there exists a Bishop-Phelps-Bollobás
theorem version for bounded linear operators.
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Definitions & Some Results

In 2008, Acosta, Aron, Garćıa and Maestre introduced the
following property:

Definition - Bishop-Phelps-Bollobás property (BPBp)

A pair of Banach spaces (X,Y ) is said to have the BPBp if for
every ε ∈ (0, 1), there exists η(ε) > 0 such that if T ∈ SL(X,Y )

and x ∈ SX satisfy

‖T (x)‖ > 1− η(ε),

there exist S ∈ SL(X,Y ) and x0 ∈ SX such that

‖S(x0)‖ = 1, ‖x0 − x‖ < ε and ‖S − T‖ < ε.
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Definitions & Some Results

There are many examples of classical Banach spaces satisfying
this property:

(Kn,Km) for n,m ∈ N,

(`1, C(K)) for a compact Hausdorff topological space K,

(Lp(µ), c0) for every 1 < p <∞,

(H1, H2) whenever H1 and H2 are Hilbert spaces.

(C0(L), Lp(µ)) for every Hausdorff locally compact space L
and 1 ≤ p <∞.
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sBPBp

A Banach space X is uniformly convex if for every ε > 0,
there exists δ(ε) > 0 such that

x, y ∈ SX and ‖x− y‖ ≥ ε⇒
∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ(ε).
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sBPBp

In 2014, Kim and Lee proved that

Kim-Lee Theorem

A Banach space X is uniformly convex if and only if given
ε > 0, there exists η(ε) > 0 such that whenever x∗ ∈ SX∗ and
x ∈ BX satisfy

|x∗(x)| > 1− η(ε),

there is x0 ∈ SX such that

|x∗(x0)| = 1 and ‖x0 − x‖ < ε.

Question

Is it true for operators?
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sBPBp

We define a property where the real number η depends not only
of ε but also of a given bounded linear operator T :

Definition of the sBPBp

We say that the pair of Banach spaces (X,Y ) has the strong
BPBp if given ε ∈ (0, 1) and T ∈ SL(X,Y ), there exists
η(ε, T ) > 0 such that whenever x0 ∈ SX satisfies

‖T (x0)‖ > 1− η(ε, T ),

there exists x1 ∈ SX such that

‖T (x1)‖ = 1 and ‖x1 − x0‖ < ε.
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sBPBp

Theorem 1

Let X be a finite dimensional Banach space. Then the pair
(X,Y ) has the sBPBp for all Banach spaces Y .

Theorem 2

Let X be a uniformly convex Banach space. Then the pair
(X,Y ) has the sBPBp for compact operators for all Banach
spaces Y .
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sBPBp

Corollary 3

If X is a uniformly convex Banach space and Y is a Banach
space with the Schur’s property, then the pair (X,Y ) has the
sBPBp. In particular, the pair (`2, `1) has the sBPBp.

Corollary 4

If X is a uniformly convex Banach space and Y is a finite
dimensional Banach space, then the pair (X,Y ) has the sBPBp.
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sBPBp

Counterexample

If X is not reflexive, then the pair (X,Y ) can not have the
sBPBp by the James Theorem.
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Uniform sBPBp

Definition

We say that a pair of Banach space (X,Y ) has the uniform
sBPBp if given ε > 0, there exists η(ε) > 0 such that whenever
T ∈ SL(X,Y ) and x0 ∈ SX satisfy

‖T (x0)‖ > 1− η(ε),

there exists x1 ∈ SX such that

‖T (x1)‖ = 1 and ‖x1 − x0‖ < ε.

The Kim-Lee theorem says that the pair (X,K) has the
uniform sBPBp if and only if X is a uniformly convex Banach
space.
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Uniform sBPBp

Counterexample

Consider X = `22(K) and Y = `2∞(K).

Suppose that there exists
η(ε) > 0 with the above property. Let T : X → Y defined by

T (x, y) :=

((
1− 1

2
η(ε)

)
x, y

)
.

So:

‖T‖ = 1,

‖T (e1)‖∞ > 1− η(ε),

every z ∈ SX such that ‖T (z)‖∞ = 1 assumes the form
z = λe2 for some |λ| = 1.

But, in this case, we have ‖e1 − z‖2 =
√

2.
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Uniform sBPBp

All the following pairs fail to have the uniform sBPBp:

(1) (`22, `
2
∞),

(2) (`22, `
2
2),

(3) (`2p, `
2
q) for 1 < p ≤ q <∞.

(4) (`22, `
2
1),

(5) (`22, `
2
q), for 1 ≤ q < 2.

(6) (`22(R), `2q(R)) for 1 ≤ q ≤ ∞.

(7) (`2p(R), `2q(R)) for 1 < p ≤ 2 and 1 ≤ q ≤ 2.

(8) (`22, C[0, 1]),

(9) (Y, Y ), where dim(Y ) = 2.
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Uniform sBPBp vs sBPBp

Next, we use the negative results about the uniform sBPBp to
get negative results about the sBPBp.

Theorem 5

If the pair (X,Y ) fails the uniform sBPBp, then the pair
(`2(X), `∞(Y )) fails the sBPBp.
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Uniform sBPBp vs sBPBp

In particular, the pairs (`2, `∞(Z)) fail the sBPBp when

(a) Z = `2∞, `22, `21, C[0, 1], `2q for 2 ≤ q <∞ in both real
and complex cases and

(b) Z = `2q , `
2
q for 1 ≤ q ≤ 2 in the real case.
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Uniform sBPBp vs sBPBp

Theorem 6

The following holds.

(i) The pair (`p, `q) has the sBPBp whenever 1 ≤ q < p <∞.

(ii) The pair (`p, `q) fails the sBPBp whenever 1 < p ≤ q <∞.
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...and now...

...we are studying the following property:

The uniform strong Bishop-Phelps-Bollobás point property

We say the a pair (X,Y ) of Banach spaces has the uniform
sBPBp-p if given ε > 0, there exists some η(ε) > 0 such that
whenever T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX satisfy

‖T (x0)‖ > 1− η(ε),

there exists S ∈ L(X,Y ) with ‖S‖ = 1 such that

‖S(x0)‖ = 1 and ‖S − T‖ < ε.
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Thank you very much
for your attention
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