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Definition

A functional x∗ ∈ X ∗ attains the norm if there is x0 ∈ SX such
that

|x∗(x0)| = ‖x∗‖ = sup
x∈SX

|x∗(x)|.

Question

How many functionals on X attains the norm?

James Theorem

A Banach space X is reflexive if and only if every functional in X ∗

attains the norm.
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Question

When does the set NA(X ) is norm dense in X ∗?

Bishop-Phelps Theorem (1961)

For every Banach space, NA(X ) = X ∗.

Question

Is it true for bounded linear operators?
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Definition

T ∈ L(X ,Y ) attains the norm if there is x0 ∈ SX such that

‖T (x0)‖ = ‖T‖ = sup
x∈SX

‖T (x)‖.

Notation

NA(X ,Y ) = the set of all norm attaining operators

Bishop-Phelps’ question

NA(X ,Y ) = L(X ,Y ) for every X ,Y ?

Sheldon Dantas NA and BPBps



Definition

T ∈ L(X ,Y ) attains the norm if there is x0 ∈ SX such that

‖T (x0)‖ = ‖T‖ = sup
x∈SX

‖T (x)‖.

Notation

NA(X ,Y ) = the set of all norm attaining operators

Bishop-Phelps’ question

NA(X ,Y ) = L(X ,Y ) for every X ,Y ?

Sheldon Dantas NA and BPBps



Definition

T ∈ L(X ,Y ) attains the norm if there is x0 ∈ SX such that

‖T (x0)‖ = ‖T‖ = sup
x∈SX

‖T (x)‖.

Notation

NA(X ,Y ) = the set of all norm attaining operators

Bishop-Phelps’ question

NA(X ,Y ) = L(X ,Y ) for every X ,Y ?

Sheldon Dantas NA and BPBps



Lindenstrauss counterexample (1963)

There is a Banach space X such that

NA(X ,X ) 6= L(X ,X ),

showing that the Bishop-Phelps result does not hold for bounded
linear operators in general.

Sheldon Dantas NA and BPBps



Lindenstrauss introduced properties A and B:

Definition

(a) X has property A if NA(X ,Y ) = L(X ,Y ), ∀Y .

(b) Y has property B if NA(X ,Y ) = L(X ,Y ), ∀X .

Examples (Lindenstrauss, 1963)

Reflexive spaces have property A.

`1 has property A (property α).

c0 and `∞ have property B (property β).

Examples (Lindenstrauss, 1963)

L1[0, 1] fails property A.

Y strictly convex containing c0 fails property B.
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Examples

Infinite dimensional Lp(µ) spaces with 1 < p <∞ fail property
B.
(T. Gowers)

Infinite dimensional strictly convex spaces fail property B.
(M. Acosta)

Infinite dimensional L1(µ) fail property B.
(M. Acosta)
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(M. Mart́ın)

There are compact operators which cannot be approximated by
norm attaining operators.

Question

Can finite-rank operators be approximated by norm attaining
operators?
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The Bollobás
Theorem
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In 1970, Bollobás improved the Bishop-Phelps theorem.

Bishop-Phelps-Bollobás theorem (1970)

Let ε ∈ (0, 2). Given (x , x∗) ∈ BX × BX∗ with

|x∗(x)| > 1− ε2

2
,

there are elements y ∈ SX and y∗ ∈ SX∗ such that

‖y∗‖ = |y∗(y)| = 1, ‖y − x‖ < ε, and ‖y∗ − x∗‖ < ε.

(2014, M. Chica, V. Kadets, M. Mart́ın, S. Moreno-Pulido)
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Bishop-Phelps-Bollobás theorem ⇒ Bishop-Phelps theorem

It is not expected that there exists a Bishop-Phelps-Bollobás
theorem version for bounded linear operators in general.
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2008, M. Acosta, R. Aron, D. Garćıa and M. Maestre:

Bishop-Phelps-Bollobás property (BPBp)

A pair of Banach spaces (X ,Y ) is said to have the BPBp if for
every ε ∈ (0, 1), there exists η(ε) > 0 such that if T ∈ L(X ,Y )
with ‖T‖ = 1 and x ∈ SX satisfy

‖T (x)‖ > 1− η(ε),

there are S ∈ L(X ,Y ) with ‖S‖ = 1 and x0 ∈ SX such that

‖S(x0)‖ = 1, ‖x0 − x‖ < ε, and ‖T − S‖ < ε.
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Bishop-Phelps-Bollobás property (BPBp)

A pair of Banach spaces (X ,Y ) is said to have the BPBp if for
every ε ∈ (0, 1), there exists η(ε) > 0 such that if T ∈ L(X ,Y )
with ‖T‖ = 1 and x ∈ SX satisfy

‖T (x)‖ > 1− η(ε),

there are S ∈ L(X ,Y ) with ‖S‖ = 1

and x0 ∈ SX such that

‖S(x0)‖ = 1, ‖x0 − x‖ < ε, and ‖T − S‖ < ε.

Sheldon Dantas NA and BPBps



2008, M. Acosta, R. Aron, D. Garćıa and M. Maestre:
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(X ,Y ) satisfies the BPBp ⇒ NA(X ,Y ) = L(X ,Y ).

Converse? No!

Aron, Choi, Kim, Lee, and Mart́ın, 2015

There is a Banach space Y such that

(`21,Y ) fails the BPBp but

NA(`21,Y ) = L(`21,Y ).

Sheldon Dantas NA and BPBps



(X ,Y ) satisfies the BPBp ⇒ NA(X ,Y ) = L(X ,Y ).

Converse? No!

Aron, Choi, Kim, Lee, and Mart́ın, 2015

There is a Banach space Y such that

(`21,Y ) fails the BPBp but

NA(`21,Y ) = L(`21,Y ).

Sheldon Dantas NA and BPBps



(X ,Y ) satisfies the BPBp ⇒ NA(X ,Y ) = L(X ,Y ).

Converse? No!

Aron, Choi, Kim, Lee, and Mart́ın, 2015

There is a Banach space Y such that

(`21,Y ) fails the BPBp but

NA(`21,Y ) = L(`21,Y ).

Sheldon Dantas NA and BPBps



They proved that the pair (X ,Y ) has the BPBp if:

(a) X and Y are finite dimensional Banach spaces.

(b) X = `1 and

Y = L1(µ) with µ a finite measure,

Y is uniformly convex,

Y = C (K ) for K a compact Haurdorff space.
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Since 2008, there has been a lot of attention on this topic:

(L1[0, 1], L∞[0, 1]) has the BPBp
(2011, R. Aron, Y. S. Choi, D. Garćıa, M. Maestre)

(X ,A) has the BPBp (X Asplund and A uniform algebra)
(2013, B. Cascales, A. Guirao, V. Kadets)

(L1(µ), L1(ν)) has the BPBp
(2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Mart́ın)
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Pairs of classic Banach spaces having the BPBp

RANGE SPACES
FD `n1 `np `nq `n∞ c0 `1 `p `q `∞

D
O
M
A
I
N

S
P
A
C
E
S

FD X X X X X X X
`n1 X X X X X X X
`np X X X X X X X X X X
`nq X X X X X X X X X X
`n∞ X X X X X X X
c0 X X
`1 X X X X X X X X X X
`p X X X X X X X X X X
`q X X X X X X X X X X
`∞ X X
L1(µ) X Xσ X
L1(ν) X Xσ X
Lp(µ) X X X X X X X X X X
Lp(ν) X X X X X X X X X X
Lq(µ) X X X X X X X X X X
Lq(ν) X X X X X X X X X X
L∞(µ) X X
L∞(ν) X X
C(K) XR XR X XR XR X
C(S) XR XR X XR XR X
C0(L1) X X
C0(L2) X X

1
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1



Pairs of classic Banach spaces having the BPBp

RANGE SPACES
L∞(µ) L∞(ν) C(K) C(S) C0(L1) C0(L2)

D
O
M
A
I
N

S
P
A
C
E
S

FD Xσ Xσ

`n1
`np X X X X X X
`nq X X X X X X
`n∞
c0 Xσ Xσ X X
`1 X X
`p X X X X X X
`q X X X X X X
`∞
L1(µ) X• X•
L1(ν) X• X•
Lp(ν) X X X X X X
Lp(µ) X X X X X X
Lq(µ) X X X X X X
Lq(ν) X X X X X X
L∞(µ)
L∞(ν)
C(K) XR XR
C(S) XR XR
C0(L1) X◦ X◦
C0(L2) X◦ X◦

1



The Bishop-Phelps-Bollobás
Point Property
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Bishop-Phelps-Bollobás point property (BPBpp)

A pair of Banach spaces (X ,Y )

is said to have the BPBpp if for
every ε ∈ (0, 1), there exists η(ε) > 0 such that if T ∈ L(X ,Y )
with ‖T‖ = 1 and x ∈ SX satisfy

‖T (x)‖ > 1− η(ε),

there is S ∈ L(X ,Y ) with ‖S‖ = 1 such that

‖S(x)‖ = 1 and ‖S − T‖ < ε.

BPBpp ⇒ BPBp
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Theorem (D., S.K. Kim, H.J. Lee)

The Banach space X is uniformly smooth if and only if the pair
(X ;K) has the BPBpp.

Examples:

(a) If H is a Hilbert space, then the pair (H;K) has the BPBpp.

(b) The pair (Lp(µ);K) has the BPBpp for a σ-finite measure µ
and 1 < p <∞.
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Theorem (D., S.K. Kim, H.J. Lee)

Let X be a Banach space. Suppose that there is some Banach
space Y such that the pair (X ;Y ) has the BPBpp. Then X is
uniformly smooth.

Examples:

(a) The pair (c0;Y ) fails the BPBpp for all Banach space Y .

(b) The pair (`1;Y ) fails the BPBpp for all Banach space Y .
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Theorem (D., S.K. Kim, H.J. Lee)

Assume that X is uniformly smooth and that Y has the property
β. Then the pair (X ;Y ) has the BPBpp.

Examples:

(a) The pairs (Lp(µ); c0) and (Lp(µ); `∞) have the BPBpp for a
σ-finite measure µ and 1 < p <∞.

(b) If H is a Hilbert space, then the pairs (H; c0) and (H; `∞) has
the BPBpp.
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Let us conclude the talk...
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One might consider...

The concept for norm-attainment for:

Bilinear forms

Multilinear mappings

Polynomials

Homogeneous polynomials

Holomorphic functions

Lipschitz functions

Tensor products

Symmetric tensor products...
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Most important open question

Q. R2 has property B? That is,

NA(X ,R2) = L(X ,R2), ∀X?
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Thank you
for your attention
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