
Funciones definidas en espacios
de Banach que alcanzan su máximo

Sheldon Gil Dantas

Universitat de València
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Motivation and
Historical background
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Definition

A functional x∗ ∈ X ∗ attains the norm if there is x0 ∈ SX such
that

|x∗(x0)| = ∥x∗∥ = sup
x∈SX

|x∗(x)|.

Throw easy examples!

Problem

How many functionals on X attain their norms?

James Theorem

The following statements are equivalent.

(1) A Banach space X is reflexive.

(2) Every functional in X ∗ attains the norm.
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Problem

When is the set NA(X ) dense in X ∗?

Bishop-Phelps Theorem (1961)

For every Banach space, NA(X ) = X ∗.

Problem

Is it true for bounded linear operators?
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Definition

T ∈ L(X ,Y ) attains the norm if there is x0 ∈ SX such that

∥T (x0)∥ = ∥T∥ = sup
x∈SX

∥T (x)∥.

Bishop-Phelps’ problem

NA(X ,Y ) = L(X ,Y ) for every X ,Y ?
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Lindenstrauss counterexample (1963)

There is a Banach space X such that

NA(X ,X ) ̸= L(X ,X ),

showing that the Bishop-Phelps result does not hold for bounded
linear operators in general.
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Main problem

Can finite-rank operators be approximated by norm-attaining ones?
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Current research
on the topic
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Lineability
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Definition

Let V be a topological vector space, M a subset of V and µ a
cardinal number. We say that M is

⋆ lineable if M ∪ {0} contains an infinite dimensional vector
subspace of V .

⋆ µ-lineable if M ∪ {0} contains a vector subspace of V of
dimension µ.

⋆ spaceable if M ∪ {0} contains a closed infinite dimensional
vector subspace of V .

⋆ µ-spaceable if M ∪ {0} contains a closed vector subspace of
V of dimension µ.
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⋆ Is it true a Bishop-Phelps type theorem for operators?

Lindenstrauss says:
“No, it’s not!”
“Here it’s a renorming of c0 and an operator defined on it!”

In fact, we have the following result.

Theorem (2023, D., Falcó, Jung, Rodŕıguez-Vidanes)

Let X and Y be Banach spaces. Let Γ be any infinite set. Let Y
be a strictly convex renorming of c0(Γ). Then, the subset

L(c0(Γ),Y ) \ NA(c0(Γ),Y )

is 2|Γ|-spaceable in L(c0(Γ),Y ).

This provides a great amount of operators with such a property!
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⋆ After J. Lindenstrauss:

Definition

A Banach space Y satisfies property B if NA(Z ,Y ) is dense in
L(Z ,Y ) for every Banach space Z.

⋆ W. Gowers says: “ℓp-spaces fail property B!”

Theorem (2023, D., Falcó, Jung, Rodŕıguez-Vidanes)

Let X and Y be Banach spaces. Suppose that w = (1/n)∞n=1 ∈ c0
and 1 < p < ∞. Then, the subset

L(d∗(w , 1), ℓp) \ NA(d∗(w , 1), ℓp)
a

is c-spaceable in L(d∗(w , 1), ℓp).

ad∗(w , 1) is the predual of the Lorentz sequence space d(w , 1)

It says that ℓp-spaces fail property B in an abundant fashion!
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⋆ Afterwards, M. Acosta generalized Gowers’ result:

“Any infinite-dimensional strictly convex fails property B!”

Theorem (2023, D., Falcó, Jung, Rodŕıguez-Vidanes)

Let w ∈ ℓ2 \ ℓ1 be a non-increasing sequence of positive numbers
with w1 < 1. If Y is an infinite dimensional strictly convex Banach
space, then the subset

L(X (w),Y ) \ NA(X (w),Y )a

is c-spaceable in L(X (w),Y ).

aX (w) is the Banach space constructed by Acosta

A huge subset compressed by operators that cannot be approximated
by norm-attaining operators defined on Acosta’s space X (w)!
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Strong subdifferentiability
of the norm of a Banach space
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Strong subdifferentiability of the norm

Definition:

The norm of X is strongly subdifferentiable (SSD, for
short) at a point u ∈ SX if the one-sided limit

lim
t→0+

1

t
(∥u + tx∥ − 1) =: τ(u, x)

exists uniformly for x ∈ BX .

⋆ The norm is Fréchet differentiable iff it is Gâteaux and SSD.
⋆ SSD is more general than Fréchet differentiability.

⋆ Consider ϕn on BX defined by

ϕn(x) =
1

n

(∥∥∥u +
x

n

∥∥∥− 1
)
= ∥nu + x∥ − n, ∀n.

⋆ (ϕn)
∞
n=1 is a decreasing sequence of continuous functions point-

wise converging on BX to the continuous function τ(u, ·).

⋆ The norm of X is SSD iff (ϕn)
∞
n=1 converges uniformly on BX .
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⋆ The norm is Fréchet differentiable iff it is Gâteaux and SSD.
⋆ SSD is more general than Fréchet differentiability.
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⋆ The norm is Fréchet differentiable iff it is Gâteaux and SSD.
⋆ SSD is more general than Fréchet differentiability.
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wise converging on BX to the continuous function τ(u, ·).

⋆ The norm of X is SSD iff (ϕn)
∞
n=1 converges uniformly on BX .
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Classical Banach spaces

⋆ The norm of any finite-dimensional space is SSD.

(Dini’s theorem: if a monotone sequence of continuous func-
tions converges pointwise on a compact space and if the limit
function is also continuous, then the convergence is uniform)
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Classical Banach spaces

⋆ The norm of any finite-dimensional space is SSD.
(Dini’s theorem)

⋆ The (sup-)norm on c0 is SSD at every point.
(C. Franchetti, 1986)

⋆ ℓp-spaces are SSD for 1 < p < ∞.
(Uniformly smooth ⇔ Uniformly Fréchet differentiable on SX )

⋆ If X ∗ is SSD, then X must be reflexive.
Hence ℓ1 and ℓ∞ are not SSD.
(C. Franchetti, R. Payá, 1993)
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⋆ If X ∗ is SSD, then X must be reflexive.
Hence ℓ1 and ℓ∞ are not SSD.
(C. Franchetti, R. Payá, 1993)

Sheldon Gil Dantas Norm-attaining functions



Some properties of the SSD

⋆ The norm of ℓ1 is only SSD at points in Sℓ1 which are sequences
with finitely many nonzero terms.
(J.R. Giles, D A. Gregory, B. Sims, 1978)

⋆ The set of SSD points of the norm of ℓ∞ is not a Gδ in ℓ∞.
(G. Godefroy, V. Montesinos, V. Zizler, 1995)

⋆ A Banach space with an SSD norm is Asplund.
(G. Godefroy, V. Montesinos, V. Zizler, 1995)

⋆ The norm of X is SSD when X is a predual of the

⋆ Hardy space H1 of analytic functions on the ball,
⋆ Lorentz spaces Lp,1(µ),
⋆ Trace Class C1.

(S.J. Dilworth, D. Kutzarova, 1995)
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Strategy(?)

Which characterization of the SSD should we use?

⋆ The norm of X is SSD at x ∈ SX if and only if given ε > 0,
there exists η(ε, x) > 0 such that whenever x∗ ∈ SX∗ satisfies

|x∗(x)| > 1− η(ε, x)

there exists y∗ ∈ SX∗ such that

|y∗(x)| = 1 and ∥y∗ − x∗∥ < ε.

(C. Franchetti and R. Payá, 1993)
(G. Godefroy, V. Montesinos, V. Zizler, 1995)

⋆ Sheldon says:
¡Ostras! It is “similar” to a Bollobás type theorem!
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Bollobás theorem (1963)

Let X be Banach space. Given ε > 0, there is η(ε) > 0 such that
whenever x∗ ∈ SX∗ and x ∈ SX satisfy

|x∗(x)| > 1− η(ε)

there are y∗ ∈ SX∗ and y ∈ SX such that

|y∗(y)| = 1, ∥y − x∥ < ε and ∥y∗ − x∗∥ < ε.

Bollobás ⇒ Bishop-Phelps
Sheldon says:

It is “similar” to a Bollobás type theorem but different!
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SSD on P(NX ,Y ∗)

Theorem (2023, D., Jung, Mazzitelli, Rodŕıguez)

Under some natural conditions we have:

(i) P(Nℓp) is SSD if and only if N < p.

(ii) P(Nℓp, ℓq) is SSD if and only if Nq < p.

(iii) P(N lM1) is SSD if and only if N < αM1 .

(iv) P(N lM1 , lM2) is SSD if and only if NβM2 < αM1 .

(v) P(Nd(w , p)) is SSD if and only if N < p.

(vi) P(Nd(w , p), lM2) is SSD if and only if NβM2 < p.
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SSD on L(X1 × · · · × XN ,K)

Theorem (2023, D., Jung, Mazzitelli, Rodŕıguez)

Under some natural conditions we have:

(i) L(ℓp1 × · · · × ℓpN ) is SSD iff 1
p1

+ · · ·+ 1
pN

< 1.

(ii) L(ℓp1 × · · · × ℓpN , ℓq) is SSD iff 1
p1

+ · · ·+ 1
pN

< 1
q .

(iii) L(lM1 × · · · × lMN
) is SSD iff 1

αM1
+ · · ·+ 1

αMN
< 1.

(iv) L(lM1 × · · · × lMN
, lMN+1

) is SSD iff 1
αM1

+ · · ·+ 1
αMN

< 1
βMN+1

.

(v) L(d(w1, p1)× · · · × d(wN , pN)) is SSD iff 1
p1

+ · · ·+ 1
pN

< 1.

(vi) L(d(w1, p1)×· · ·×d(wN , pN), lMN+1
) is SSD iff 1

p1
+· · ·+ 1

pN
< 1

βMN+1
.
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Current different contexts...

⋆ Weighted and Bloch spaces

⋆ Banach lattices

⋆ Tensor products between Banach spaces

⋆ Lipschitz functions
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¡Muchas gracias!
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