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Notation 
 
Let (𝑀, 𝑑) be a complete metric space where we pick 0 to be the based point of it. Consider the space Lip0(𝑀) of all Lipschitz 
functions 𝑓 on 𝑀 with real values such that 𝑓(0) = 0. This is a Banach space endowed with the Lipschitz number of each function. 
Consider the evaluations functionals 𝛿(𝑥) given by 𝛿(𝑥)(𝑓) = 𝑓(𝑥) for every 𝑓 ∈ Lip0(𝑀) and every 𝑥 ∈ 𝑀. The Lipschitz-free 
space is the closed space generated by such functionals on 𝑀 and we denote it by 𝐹(𝑀). 
 
We work with Banach spaces 𝑋 over a field 𝕂, which can be the set of real numbers, ℝ, or the set of complex numbers, ℂ. We 
denote by 𝑆𝑋 and 𝐵𝑋 the unit sphere and the unit ball of the Banach space 𝑋, respectively. We denote by 𝑋∗ the dual space of 𝑋. 
Let 𝑌 be also a Banach space. The symbol ℒ(𝑋, 𝑌) stands for the Banach space of all bounded linear operators 𝑇: 𝑋 ⟶ 𝑌. We 
say that 𝑇 attains its norm, or it is norm-attaining, if there is 𝑥0 ∈ 𝑆𝑋 such that  
 

‖𝑇‖  =  sup𝑥∈𝐵𝑋
 ‖𝑇(𝑥)‖  =  ‖𝑇(𝑥0)‖. 

 
In other words, 𝑇 is norm-attaining when the supremum in the definition of its norm is in fact a maximum. The set of all norm-
attaining operators from 𝑋 into 𝑌 is denoted by NA(𝑋, 𝑌). When 𝑌 = 𝕂, we denote it simply by NA(𝑋) (notice that when 𝑌 = 𝕂, we 

have bounded linear functionals 𝑥∗: 𝑋 ⟶ 𝕂 instead and we denote by NA(𝑋) the set of all bounded linear functionals which attain 
their norms). We denote by K(𝑋) the set of all compact operators from 𝑋 into 𝑌. 
 

Let 𝑋, 𝑌 be normed linear spaces. We say that the norm ‖·‖ of 𝑋 is 𝐶𝑘-smooth if its 𝑘th Fréchet derivative exists and is continuous 
at every point of 𝑋 ∖ {0}. The norm is said to be 𝐶∞-smooth if this holds for every 𝑘 ∈ ℕ. We denote by 𝒫(  𝑋; 𝑌 

𝑛 ) the normed 
linear space of all 𝑛-homogeneous continuous polynomials from 𝑋 into 𝑌. If 𝑈 ⊂ 𝑋 is an open subset, then we say that a function 
𝑓: 𝑈 ⟶ 𝑌 is analytic if, for every 𝑎 ∈ 𝑈, there exist  𝑃𝑛 ∈ 𝒫(  𝑋; 𝑌 

𝑛 ) (𝑛 ∈ ℕ ∪ {0}) and 𝛿 > 0 such that, for all 𝑥 ∈ 𝑈(𝑎, 𝛿), 
 

𝑓(𝑥) = ∑ 𝑃𝑛(𝑥 − 𝑎)

∞

𝑛=0

. 

   
BACKGROUND 

 
Lipschitz-free spaces 
 
The Lispchitz-free space 𝐹(𝑀) has several important and relevant properties such as (a). it contains an isometric copy 𝛿(𝑀) of 
𝑀 which is linearly dense; and (b). it is the predual of the space Lip0(𝑀). Besides (a) and (b), it satisfies the following universal 

property: (c). every Lipschitz function from 𝑀 into a Banach space 𝑋 can be extended to a linear operator from 𝐹(𝑀) into 𝑋. 
 
Nowadays, thanks to the properties described in the previous paragraph, the Lipschitz-free space is a fundamental tool to the 
study of the geometry of Banach spaces since it allows applications from classical linear techniques to non-linear problems.  
 
For a complete motivation on this topic, we send the reader to several different references along these lines. For instance, the 
seminal paper by Kantorovich and Rubinstein about optimal transport [KR], which was followed by several mathematications as 
Arens, de Leeuw, Eells, Johnson, Kadets and Pestov [AE,DL,J]. A systematic study about these spaces was done by Weaver 
[W] in 1999 and his book is still one of the most significant references in the area.  
 
Towards Banach spaces theory, the usage of Lipschitz-free spaces was used in this theory for the first time in 2003 by Godefroy 
and Kalton [GK]. There, the authors study classical Banach spaces concepts as the metric approximation property and the 
bounded approximation property. From these results, the development of the theory on Lipschitz-free spaces increased 
exponentially and nowadays is one of the most in fashion topics in Banach spaces theory. Although very easy to understand and 
easy to follow at a first sight, the theory of Lipschitz-free spaces is new and there are lots of work to be done still in this line. Its 
connection with the study of the geometry of Banach spaces is the main motivation that the candidate finds to be interested in 
going into this recent theory and learning its techniques.  

 
Renorming theory 
 
Other important topic on Banach Spaces theory that the candidate started going into not long ago (in fact, when he went to the 
Czech Republic for a researcher position to collaborate with Petr Hájek) is Renorming Theory, where Hájek is one of the most 
powerful experts nowadays around the whole world. Together with Tommaso Russo (Innsbruck University, Austria), we study the 
behavior of the norms of the spaces when it comes to smoothness in (not necessarily complete) normed spaces. The main 
question that we face here in this ongoing project is the following (very general) one. 
 

Problem 1: Given a Banach space 𝑋 and 𝑘 ∈ ℕ ∪ {∞, 𝜔}, is there a dense subspace 𝑌 of 𝑋 such that 𝑌 admits a 𝐶𝑘-smooth norm?  
 
(by definition, 𝐶𝜔-smooth means analytic). Such a line of research can be traced back at least to the papers [H, V] from the early 

nineties, where it was proved that every separable Banach space admits a dense subspace with a 𝐶∞-smooth norm. In particular, 
for a separable normed space 𝑋 the existence of a 𝐶1-smooth norm does not imply that 𝑋∗ is separable, a result that is possibly 
surprising at a first sight. Our goal is to push such a theory to the non-separable context and it turns out that the main result of 
one publication the candidate has with Petr Hájek and Tommaso Russo [DHR] asserts that every Banach space with a 
fundamental biorthogonal system (for instance, all Plichko space admit a fundamental biorthogonal system: WLD Banach spaces, 
hence all WCG spaces and in particular all reflexive ones; every 𝐿1(𝜇)-space and every 𝐶(𝐾)-space, where 𝐾 is a Valdivia 
compactum or an Abelian compact group, is a Plichko space) has a dense subspace with a 𝐶∞-smooth norm as described in the 
next theorem. 
 



Theorem 1: [DHR] Suppose that 𝑋 has a fundamental biorthogonal system {𝑒𝛼; 𝜑𝛼}𝛼∈Γ. Also, consider the dense subspace 𝑌 of 
𝑋 given by 𝑌 ≔ span{𝑒𝛼}𝛼∈Γ. Then 𝑌 admits 
 
(i) a polyhedral and LFC norm. 
(ii) a 𝐶∞-smooth and LFC norm. 
(iii) a 𝐶∞-smooth and LFC bump. 
(iv) locally finite, 𝜎-uniformly discrete 𝐶∞-smooth and LFC partitions of unity.  
(v)  a 𝐶1-smooth LUR norm. 
 
As it turned out, in most of the above results, the dense subspace 𝑌 of 𝑋 is the linear span of a certain biorthogonal system in 𝑋. 
In particular, when 𝑋 is separable, the subspace 𝑌 has countable dimension (namely, it is the linear span of a countable set). In 
an even more recent publication, we focused on the classical (long) sequence spaces and we show that it is possible to go 
beyond this limitation; in particular, we build 𝐶∞ -smooth norms on dense subspaces that are “large” in a some sense. More 
precisely, the following is our main result. 
 
Theorem 2: [DHR1] Let 1 ≤ 𝑝 < ∞ and Γ be any infinite set. Then  
  

𝑌𝑝 ≔ {𝑦 ∈ ℓ𝑝(Γ): ‖𝑦‖𝑞 < ∞ for some 𝑞 ∈ (0, 𝑝)} = ⋃ ℓ𝑞(Γ)

0<𝑞<𝑝

 

  
is a dense subspace of ℓ𝑝(Γ) which admits a 𝐶∞-smooth and LFC norm. 

 
Norm-attaining theory 
 
One of the most classical topics in the theory of Banach spaces is the study of norm-attaining functions. As a matter of fact, one 
of the most famous characterizations of reflexivity, due to R. James, is described in terms of linear functionals which attain their 
norms (see, for instance, Corollary 3.56 of [FHHMPZ]). In the same direction, E. Bishop and R. Phelps proved that the set of all 
norm-attaining linear functionals is dense in 𝑋∗ (see [BP]). This means that whenever a functional 𝑥∗ ∈ 𝑋∗ is given, one is able to 
find a norm-attaining functional 𝑦∗ ∈ 𝑋∗ such that ‖𝑦∗ − 𝑥∗‖ ≈ 0. This motivated J. Lindenstrauss to study the analogous problem 
for bounded linear operators in his seminal paper [LINDS2], where it was obtained for the first time an example of a Banach 
space such that the Bishop-Phelps theorem is no longer true for this class of functions. Consequently, this opened the gate for a 
crucial and vast research on the topic during the past fifty years in many different directions. Indeed, just to name a few, J. 
Bourgain, R.E. Huff, J. Johnson, W. Schachermayer, J.J. Uhl, J. Wolfe, and V. Zizler continued the study of the set of all linear 
operators which attain their norms; M. Acosta, R. Aron, F.J. Aguirre, Y.S. Choi, R. Payá tackled problems in the same line 
involving bilinear mappings; D. García and M. Maestre considered it for homogeneous polynomials; and more recently several 
problems on norm-attainment of Lipschitz maps were considered. 
 
What it is known nowadays as the Bishop-Phelps-Bollobás theorem is a result due to B. Bollobás which is a strengthening of the 
Bishop-Phelps theorem (already mentioned before). It says that whenever 𝑥 ∈ 𝑆𝑋 and 𝑥∗ ∈ 𝑆𝑋∗ satisfy 

|𝑥∗(𝑥)| > 1 −
𝜀2

2
 

 

where 0 < 𝜀 <
1

2
, there are 𝑦 ∈ 𝑆𝑋 and 𝑦∗ ∈ 𝑆𝑋∗ such that 

 
|𝑦∗(𝑦)| = 1, ‖𝑦∗ − 𝑥∗‖ < 𝜀, and ‖𝑦 − 𝑥‖ < 𝜀. 

 
The first expression means that 𝑦∗ attains its norm at 𝑦; the second means simply the Bishop-Phelps theorem (that is, it gives 
the density of NA(𝑋) in 𝑋∗); and the third (which is the new deal here) tells us that the point 𝑦 is as close as we want to the initial 
point 𝑥 where 𝑥∗ “almost” attains its norm at. 
 
Therefore, since the Bishop-Phelps-Bollobás theorem implies the Bishop-Phelps theorem, and since the Bishop-Phelps theorem 
is not valid in general for bounded linear operators (as Lindenstrauss showed), we cannot expect a general version of the 
Bollobás' theorem for operators. For this reason, many authors started studying the subset NA(𝑋, 𝑌) of all norm-attaining 
operators from 𝑋 into 𝑌 to see when it is dense in ℒ(𝑋, 𝑌) and, besides, when it is possible to get a Bollobás' type theorem for 
this class of functions.  

 
OPEN PROBLEMS 

 
Lipschitz-free spaces 
 
As mentioned before, we are interested in considering a direct relation between Banach spaces concepts with the theory of 
Lipschitz-free spaces. For that reason, all the problems the candidate would like to take a look at are somehow related to Banach 
spaces theory, where he has some experience on. We would like to highlight that Hájek is currently one of the most active 
researchers in the area of Lipschitz-free spaces.  
 
Two problems we would like to take into consideration is the behavior of extreme points of the unit ball of 𝐹(𝑀). In other words, 
we would like to tackle the following two problems. 
 
Problems 1: (a). What are the extreme points of 𝐵𝐹(𝑀)? 

                    (b). What are the extreme points of 𝐵𝐹(𝑀)∗∗? 

 
About Problem 1.(a), it is conjectured that all extreme points are molecules. This is known to be true in several cases already 
and also studied for stronger properties as preserved extreme points, denting points and strongly exposed points (see [A, AG, 



APS, APP, AP1,GPPR, GPR]). About Problem 1.(b), only those belonging to 𝐹(𝑀) (in other words, the preserved extreme points 
of 𝐵𝐹(𝑀)) have been studied (see [AG]). 

 
Problem 2. What are the points of 𝐹(𝑀) where the norm is Fréchet differentiable? 
 
These points must exist only when 𝑀 is uniformly discrete and bounded [BLR]. For such 𝑀, all points are convex series of 
molecules [APS] and also points of Gâteaux differentiability are characterized [AR]; Gâteaux and Fréchet differentiability agree 
for finitely supported points, but not for infinitely supported ones. Related to this last problem is the following one. 
 
Problem 3. What are the points of 𝐹(𝑀) where the norm is strongly subdifferentiable (strong subdifferentiability is a weaker 
concept than Fréchet differentiability; in fact, the norm is Fréchet differentiable at 𝑥 if and only if the norm is Gâteaux differentiable 
and strongly subdifferentiable at 𝑥)? 
 
We would like also to take a look at Schauder basis for these spaces. We have the following open question. 
 

Problem 4: Do 𝐹(ℓ𝑝), 1 < 𝑝 < ∞, have a Schauder basis? Does it have at least finite-dimensional decomposition? 

 
Hájek and Pernecká proved that 𝐹(ℓ1) has a Schauder basis with basis constant at most 3 and that 𝐹(ℓ𝑛

1 ) has a monotone 

Schauder basis [HP]. But nothing is known for 𝐹(ℓ𝑝), not even for 𝐹(ℓ2). A related question is whether 𝐹(ℓ1) has a monotone 

basis. The following is also not known. 
 
Problem 5: Does every 𝐹(𝑀), with 𝑀 ⊆ ℝ𝑛, have a Schauder basis? 
 
Renorming theory 

 
One of our intentions is to continue the research on this topic as it seems to be very promising in the area. Indeed, we would like 
to continue pushing forward Problem 1 (which seems to be a very bold and broad question). For instance, some (more concrete) 
problems we want to look at closely and carefully are the following ones.  
 
Problem 1: Is it true that the Banach space 𝐶(𝐾) has dense subspaces with analytic norm if and only if 𝐾 is separable? 
 
For this we would need to develop need techniques and new approaches since the ones in the literature seem (apparently) not 
to help much. Another question we would like to dig in is the following one, which is related to the size of the dense subspace 
which admits a smooth norm.  
 
Problem 2: For every separable Banach space 𝑋 there is a dense subspace 𝑌 of dimension continuum and with a 𝐶∞-smooth 
norm? 
 
The following problem seems to be the most irritating one since Problem 4 below seems to be the most natural Banach space 
for it but we still do not know how to tackle this problem. Once again, we would need to come up with new techniques and new 
approaches in order to solve Problems 3 and 4. 
 
Problem 3: Determine if there exists a Banach space without any subspace that admits a smooth norm. 
 
In fact, as we have mentioned before, we do not know even the following question. 
 
Problem 4: In ℓ∞, are there dense subspaces that admit no smooth norms? 

 
Norm-attaining theory 

 
One of the problems we would like to tackle here is the following one, which asks whether the set NA can be dense in the finite-
rank operators subset. In other words (maybe simpler to understand), we have the following question. 
 
Problem 1: Is it true that all finite-rank operators can be approximated by norm-attaining operators? 
 
It is worth mentioning that this problem is open even when the range space is ℝ2 endowed with the Euclidean norm. For this 
reason, Problem 1 might be one of the most ambitious one related to this topic. Nevertheless, some different approach has been 
done in this direction. Recently it was shown by M. Martín that when one replaces “finite-rank operators” by “compact operators” 
the answer is negative in general. Even more recent is a paper of the candidate together with Rubén Medina from Granada 
University: in this paper, we develop a new technique (consequently, a new approach) on how to get density for weighted 
holomorphic functions which might be helpful in order to tackle Problem 1. Even though it seems to be ambitious, we would like 
to give it a try. 
 
When dealing with problems related to the Bishop-Phelps-Bollobás theorem, one immediately realizes that each problem has a 
different approach since once the Banach space is changed, the techniques must be changed as well. A characterization is 
known for those Banach spaces 𝑌 such that operators from ℓ1 into 𝑌 satisfy a Bishop-Phelps-Bollobás type theorem for operators. 
Nevertheless, nothing is known about the same question for operators from 𝑋 into 𝐶(𝐾), that is, we have the following question. 
 
Problem 2: Characterize the topological Hausdorff spaces 𝐾 such that the bounded linear operators from 𝑋 into 𝐶(𝐾) satisfy a 
Bishop-Phelps-Bollobás type theorem for operators for every Banach space 𝑋.  
 
We do not know whether operators from 𝐶(𝐾) into 𝐶(𝑆) satisfy the Bishop-Phelps-Bollobás theorem in the complex case (in fact, 
this is unknown even for the Bishop-Phelps theorem) although in the real case the answer is affirmative (let us notice that one 
might think at a first glance that both complex and real cases must look like each other but this is not the case since the techniques 



from the real case does not help in the complex case. This means that both problems have their own interest separately). 
Moreover, the following is not known. 
 
Problem 3: Is it true that operators from 𝑐0 into ℓ1 satisfy a Bishop-Phelps-Bollobás type theorem for operators in the real case? 
 
We have mentioned before that Problem 1 is not true for compact operators. For that reason, the version for compact operators 
(see [DGMM]) of the Bollobás' theorem was studied (by considering all the involved operators as compact in the Bollobás' 
theorem). We still do not know the following question (being the converse of it not true in general). 
 
Problem 4: Is it true that the Bollobás theorem (the classical one) for operators implies the same theorem for compact operators? 
 
In fact, related to Problem 4, we would like to take a look at the following problem (that we started discussing not long ago with 
Rubén Medina, member of the research group of Hájek). 
 
Problem 4a: Does the Bollobás theorem for operators imply the Bollobás theorem for finite rank operators? 
 
Since every nuclear operator is a limit of a sequence of finite-rank operators, we were motivated (see [DJRR, DGJR]) to try taking 
one step further in the theory of norm-attaining by studying systematically the set of all nuclear operators which attain their nuclear 

norms. Given 𝑋, 𝑌 Banach spaces, we say that the tensor 𝑧 ∈ 𝑋 ⨂̂𝜋 𝑌 attains its projective norm if there is a bounded sequence 
(𝑥𝑛 , 𝑦𝑛)𝑛 ⊆ 𝑋 × 𝑌 with ∑ ‖𝑥𝑛‖ · ‖𝑦𝑛‖ < ∞∞

𝑛=1  such that 𝑧 = ∑ 𝑥_𝑛⨂𝑦𝑛
∞
𝑛=1  and ‖𝑧‖𝜋 = ∑ ‖𝑥𝑛‖ · ‖𝑦𝑛‖∞

𝑛=1 , where ‖·‖_𝜋 is the projective 
norm of 𝑧 (for a complete background on this topic, we suggest the book [RYA]). 
 
We have found out that the study of norm-attaining tensors are extremely related to the classical concept of attaining norms 

[DJRR]: if every element in 𝑋 ⨂̂𝜋 𝑌  attains its projective norm, then the set of all norm-attaining bilinear forms on 𝑋 × 𝑌 is dense 

in the set of all bilinear forms on 𝑋 × 𝑌. This provides lots of examples of tensors which never attain their projective norms and 
opens the gate to study the denseness of the subset of norm-attaining tensors. In the classical theory of norm-attaining, 
Lidenstrauss proves that when 𝑋 is reflexive, then the set NA(𝑋, 𝑌) is always dense for every Banach space 𝑌. For this reason, it 
is natural to ask the counterpart for norm-attaining tensors. Nevertheless, we still do not know the answer for it.  
 

Problem 5: Let 𝑋, 𝑌 be reflexive Banach spaces. Is it true that the subset of norm-attaining tensors is dense in 𝑋 ⨂̂𝜋 𝑌? 
 

Given a Banach space 𝑋, there is also a related concept (to tensor products) called the symmetric tensor product ⨂̂𝜋,𝑠,𝑁𝑋 where 

we can also define a natural norm-attaining object (see reference 8 on the List of Publications). However, we will not enter in 
details here. A relevant question we have in mind that we would like to tackle in a near future is the following one. 
 

Problem 6: Is it true that the set of all norm-attaining symmetric tensors is dense in the symmetric tensor product ⨂̂𝜋,𝑠,𝑁𝑋? 
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