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Notation and
Historical background
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SK and HJ have done the job already.
고마워!
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Our Motivations
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[J. Diestel, J. Uhl, J. Johnson, J. Wolfe, ≈ 1970]

Can compact operators be approximated by norm-attaining ones?

[M. Mart́ın, JFA, 2014]

There are compact operators between Banach spaces which cannot
be approximated by norm-attaining operators.

(Perhaps the) Main problem of theory

Can finite-rank operators be approximated by norm-attaining ones?
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[J. Diestel, J. Uhl, J. Johnson, J. Wolfe, ≈ 1970]

Can compact operators be approximated by norm-attaining ones?

[M. Mart́ın, JFA, 2014]

There are compact operators between Banach spaces which cannot
be approximated by norm-attaining operators.

Hello world! We are here: the Nuclear Operators!

(Perhaps the) Main problem of theory

Can finite-rank operators be approximated by norm-attaining ones?
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Known results

⋆ Nuclear Operators ⋆
⋆ Projective and Symmetric Tensors ⋆
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Projective tensor products

Let X and Y be Banach spaces.

We denote by X ⊗̂πY the projective tensor product of X and Y ,
which is defined as the completion of the normed space X ⊗ Y
endowed with the norm

∥z∥π ∶= inf {
n

∑
i=1

∥xi∥∥yi∥ ∶ z =
n

∑
i=1

xi ⊗ yi}

where the infimum is taken over all representation of z .

It is known that

⋆ BX ⊗̂πY = co(BX ⊗BY )

⋆ (X ⊗̂πY )
∗ = L(X ,Y ∗)
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Projective tensor products

⋆ (X ⊗̂πY )
∗ = L(X ,Y ∗) = B(X ×Y )

⋆ There is a canonical operator J ∶ X ∗⊗̂πY → L(X ,Y ) with
∥J∥ = 1 such that

u =
∞

∑
n=1

x∗n ⊗ yn ↦ Lu,

where

Lu(x) ∶=
∞

∑
n=1

x∗n (x)yn (x ∈ X ).

The operators that arise in this way are called nuclear operators.

Sheldon Gil Dantas Norm-attaining tensors



Projective tensor products

⋆ (X ⊗̂πY )
∗ = L(X ,Y ∗) = B(X ×Y )

⋆ There is a canonical operator J ∶ X ∗⊗̂πY → L(X ,Y ) with
∥J∥ = 1 such that

u =
∞

∑
n=1

x∗n ⊗ yn ↦ Lu,

where

Lu(x) ∶=
∞

∑
n=1

x∗n (x)yn (x ∈ X ).

The operators that arise in this way are called nuclear operators.

Sheldon Gil Dantas Norm-attaining tensors



Projective tensor products

⋆ (X ⊗̂πY )
∗ = L(X ,Y ∗) = B(X ×Y )

⋆ There is a canonical operator J ∶ X ∗⊗̂πY → L(X ,Y ) with
∥J∥ = 1 such that

u =
∞

∑
n=1

x∗n ⊗ yn ↦ Lu,

where

Lu(x) ∶=
∞

∑
n=1

x∗n (x)yn (x ∈ X ).

The operators that arise in this way are called nuclear operators.

Sheldon Gil Dantas Norm-attaining tensors



Nuclear operators

We denote by N (X ,Y ) the set of all nuclear operators endowed
with the norm:

∥T ∥N ∶= inf {
∞

∑
n=1

∥x∗n ∥∥yn∥ ∶ T (x) =
∞

∑
n=1

x∗n (x)yn}

where the infimum is taken over all representations of T .

Observations

⋆ Every nuclear operator is compact

⋆ The best we can say in general is that

N (X ,Y ) = X ∗⊗̂πY / ker J
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References for this topic

⋆ A. Defant and K. Floret
☞ Tensor Norms and Operator Ideals

⋆ A. Defant, D. Garćıa, M. Maestre and P. Sevilla-Peris
☞ Dirichlet Series and Holomorphic Functions in High Dimensions

⋆ K. Floret
☞ Natural norms on symmetric tensor products of normed spaces

⋆ R.A. Ryan
☞ Introduction to tensor products of Banach spaces
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Norm-attainment Concepts
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Norm-attaining concepts

⋆ z ∈ X ⊗̂πY attains its projective norm if there is a bounded
sequence (xn, yn) ⊆ X ×Y with ∑∞n=1 ∥xn∥∥yn∥ <∞ such that
z = ∑∞n=1 xn ⊗ yn and that ∥z∥π = ∑

∞
n=1 ∥xn∥∥yn∥

⋆ T ∈ N (X ,Y ) attains its nuclear norm if there is a bounded
sequence (x∗n , yn) ⊆ X

∗ ×Y with ∑∞n=1 ∥x
∗
n ∥∥yn∥ <∞ such that

T = ∑∞n=1 x
∗
n ⊗ yn and that ∥T ∥N = ∑

∞
n=1 ∥x

∗
n ∥∥yn∥

Sheldon Gil Dantas Norm-attaining tensors



Norm-attaining concepts

⋆ z ∈ X ⊗̂πY attains its projective norm if there is a bounded
sequence (xn, yn) ⊆ X ×Y with ∑∞n=1 ∥xn∥∥yn∥ <∞ such that
z = ∑∞n=1 xn ⊗ yn and that ∥z∥π = ∑

∞
n=1 ∥xn∥∥yn∥

⋆ T ∈ N (X ,Y ) attains its nuclear norm if there is a bounded
sequence (x∗n , yn) ⊆ X

∗ ×Y with ∑∞n=1 ∥x
∗
n ∥∥yn∥ <∞ such that

T = ∑∞n=1 x
∗
n ⊗ yn and that ∥T ∥N = ∑

∞
n=1 ∥x

∗
n ∥∥yn∥

Sheldon Gil Dantas Norm-attaining tensors



An not that new reference for this topic

⋆ R. Khalil
☞ Smooth points of unit balls of operator and function spaces
“exact nuclear operators”
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Notation

⋆ NA(X ,Y ) = {T ∈ L(X ,Y ) ∶ T attains its norm}

⋆ NA(X ×Y ) = {B ∈ B(X ×Y ,K) ∶ B attains its norm}

⋆ NAπ(X ,Y ) = {z ∈ X ⊗̂πY ∶ z attains its projective norm}

⋆ NAN (X ,Y ) = {T ∈ N (X ,Y ) ∶ T attains its nuclear norm}
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Nuclear operators and Tensors
Which attain their norms
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A characterization
(D., Jung, Roldán, Rueda Zoca, 2022)

Let X ,Y be Banach spaces. Let z ∈ X ⊗̂πY with

z =
∞

∑
n=1

λnxn ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N.

TFAE:

(1) z ∈ NAπ(X ⊗̂πY ).

(2) ∃G ∈ SL(X ,Y ∗) such that G(xn)(yn) = 1,∀n.

(3) ∀G ∈ SL(X ,Y ∗), G(z) = ∥z∥π satisfies G(xn)(yn) = 1,∀n.
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A characterization (nuclear counterpart)
(D., Jung, Roldán, Rueda Zoca, 2022)

Let X ,Y be Banach spaces. Let T ∈ N (X ,Y ) with

T =
∞

∑
n=1

λnx
∗
n ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N. TFAE:
(1) T ∈ NAN (X ,Y ).

(2) ∃G ∈ (ker J)⊥ with ∥G∥ = 1 such that G(x∗n )(yn) = 1,∀n.

(3) ∀G ∈ (ker J)⊥, ∥G∥ = 1,G(T ) = ∥T ∥N Ô⇒ G(x∗n )(yn) = 1,∀n.

Sheldon Gil Dantas Norm-attaining tensors



Relevant examples
(D., Jung, Roldán, Rueda Zoca, 2022)

Every tensor in X ⊗̂πY is norm-attaining when

⋆ X ,Y are finite dimensional
(Minkowski-Carathéodory = co(BX ×BX ) = co(BX ⊗BY ))

⋆ X = Y = H complex Hilbert spaces

⋆ X = ℓ1 and for any Y
(thanks to the canonical isometry between ℓ1⊗̂πY and ℓ1(Y ))

As a consequence, every nuclear operator

⋆ T ∈ N (c0,Y ) = ℓ1⊗̂πY attains its nuclear norm for every Y
(This should be compare to the classical theory!)
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It is natural to ask whether or not the equalities

NAN (X ,Y ) = N (X ,Y ) or NAπ(X ⊗̂πY ) = X ⊗̂πY

hold for every Banach spaces X and Y .
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A direct connection with the classical theory
(D., Jung, Roldán, Rueda Zoca, 2022)

Let X ,Y be Banach spaces. Suppose that NAπ(X ⊗̂πY ) = X ⊗̂πY .

Then, we have that

NA(X ×Y )
∥⋅∥
= B(X ×Y ).

An immediate consequence...

Let X ,Y be Banach spaces. If NAπ(X ⊗̂πY ) = X ⊗̂πY , then

NA(X ,Y ∗)
∥⋅∥
= L(X ,Y ∗).
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Examples

∃z ∈ X ⊗̂πY with z ∉ NAπ(X ⊗̂πY ) when
(in the following cases NA(X ×Y ) is not dense in B(X ×Y ,K))

(a) X = L1[0,1] and Y ∗ = strictly convex without the RNP
(J.J. Uhl, 1976)

(b) X = Gowers space and Y = ℓp
(W.T. Gowers, 1990)

(c) X = Y = L1[0,1]
✌ (Y.S. Choi, 1997) ✌

Sheldon Gil Dantas Norm-attaining tensors



Examples

∃z ∈ X ⊗̂πY with z ∉ NAπ(X ⊗̂πY ) when
(in the following cases NA(X ×Y ) is not dense in B(X ×Y ,K))

(a) X = L1[0,1] and Y ∗ = strictly convex without the RNP
(J.J. Uhl, 1976)

(b) X = Gowers space and Y = ℓp
(W.T. Gowers, 1990)

(c) X = Y = L1[0,1]
✌ (Y.S. Choi, 1997) ✌

Sheldon Gil Dantas Norm-attaining tensors



Examples

∃z ∈ X ⊗̂πY with z ∉ NAπ(X ⊗̂πY ) when
(in the following cases NA(X ×Y ) is not dense in B(X ×Y ,K))

(a) X = L1[0,1] and Y ∗ = strictly convex without the RNP
(J.J. Uhl, 1976)

(b) X = Gowers space and Y = ℓp
(W.T. Gowers, 1990)

(c) X = Y = L1[0,1]
✌ (Y.S. Choi, 1997) ✌

Sheldon Gil Dantas Norm-attaining tensors



Examples

∃z ∈ X ⊗̂πY with z ∉ NAπ(X ⊗̂πY ) when
(in the following cases NA(X ×Y ) is not dense in B(X ×Y ,K))

(a) X = L1[0,1] and Y ∗ = strictly convex without the RNP
(J.J. Uhl, 1976)

(b) X = Gowers space and Y = ℓp
(W.T. Gowers, 1990)

(c) X = Y = L1[0,1]
✌ (Y.S. Choi, 1997) ✌

Sheldon Gil Dantas Norm-attaining tensors



Denseness of Nuclear Operators
and Tensors Which attain their norms
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⋆ We are interested in a property which provides many norm-
attaining objects

⋆ A property studied in [D., Kim, Lee, Mazzitelli, 2018, 2020]
does (part of) the job

Theorem
(D., Jung, Roldán, Rueda Zoca, 2022)

Let X be a finite dimensional and Y uniformly convex Banach space.
Then, we have that

NAπ(X ⊗̂πY )
∥⋅∥π
= X ⊗̂πY and NAN (X ,Y )

∥⋅∥N
= N (X ,Y ).
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Metric π-property (P.G. Casazza’s book)

We say that a Banach space X has the metric π-property if given
ε > 0 and {x1, . . . , xn} ⊆ SX a finite collection in the sphere, then we
can find a finite dimensional subspace M ⊆ X such that

⋆ M is 1-complemented

⋆ there exists x ′i ∈M with ∥xi − x
′
i ∥ < ε for every i ∈ {1, . . . ,n}.
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Banach spaces with the Metric π-property
(All the classical Banach spaces have it!)

⋆ Banach spaces with monotone Schauder basis

⋆ Lp(µ)-spaces for any 1 ≤ p <∞ and any measure µ

⋆ L1-predual spaces

⋆ X ⊕a Y , whenever X ,Y satisfy the metric π-property

⋆ X = [⊕n∈NXn]c0 or [⊕n∈NXn]ℓp , ∀ 1 ≤ p <∞, Xn satisfying
the metric π-property

⋆ X ⊗̂πY , whenever X ,Y satisfy the metric π-property

⋆ X ⊗̂εY , whenever X ,Y satisfy the metric π-property
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Metric π-property
(D., Jung, Roldán, Rueda Zoca, 2022)

Let X be a Banach space satisfying the metric π-property. If

⋆ Y satisfies the metric π-property or

⋆ Y is uniformly convex

then we have that

NAπ(X ⊗̂πY )
∥⋅∥π
= X ⊗̂πY .
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How about the nuclear counterpart?

If a Banach space Z has the metric π-property, then it has the metric
approximation property.

As a consequence...

Let X be Banach space such that X ∗ satisfies the metric π-property.
If

⋆ Y satisfies the metric π-property or

⋆ Y is uniformly convex

then we have that

NAN (X ,Y )
∥⋅∥N
= N (X ,Y ).
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Are there tensors or nuclear operators
which cannot be approximated by

norm-attaining tensors?
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A counterexample
(D., Jung, Roldán, Rueda Zoca, 2022)

Let R be Read’s space. There exists a subspace X of c0 (which fails
the approximation property) and a Y subspace of R such that the
set of tensors in X ⊗̂πY

∗ which attain their projective norms is not
dense in X ⊗̂πY

∗. In other words,

NAπ(X ⊗̂πY)
∥⋅∥π
/= X ⊗̂πY.
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Symmetric tensor products

⋆ Luis Carlos Garćıa-Lirola, MJ and ARZ.

⋆ Norm-attaining symmetric tensors ,

⋆ Symmetric tensors which never attain their norms ,

⋆ Denseness for all classical Banach spaces ,

⋆ No counterexample! /
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New Results and Open Questions
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New Results
⋆ Non-norm-attaining tensors ⋆

⋆ Due to indirect arguments, we do not have an explicit way of
producing tensors in X ⊗̂πY or ⊗̂π,s,NX which do or do not
attain their norms.

Nevertheless, we have the following result.

(Rueda Zoca, 2023)

Let X be a Banach space with the metric π-property and whose
norm locally depends upon finitely many coordinates (for instance,
X = c0(I )). Let Y be a Hilbert space. Then,

⋆ NAπ(X ⊗̂πY )
∥⋅∥π
= X ⊗̂πY

⋆ X ⊗̂πY ∖NAπ(X ⊗̂πY )
∥⋅∥π
= X ⊗̂πY
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New Results
⋆ Operators defined on X ⊗̂πY ⋆

⋆ Another direction...

⋆ What one can say about operators defined on tensor products?

(D., Kirme and Jung, 2024)

Let X ,Y be Banach spaces.

⋆ If X ,Y have property quasi-α, so does X ⊗̂πY .

⋆ [ ✌ Y.S. Choi ✌ and H.G. Song, 2008] If X ,Y have
property quasi-α, then X ⊗̂πY has property A.
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New Results
⋆ Operators defined on X ⊗̂πY ⋆

(D., Kirme and Jung, 2024)

Let X ,Y ,Z be Banach spaces.

⋆ If NA(X ×Y ,Z)
∥⋅∥
= B(X ×Y ;Z). Then,

NA(X ⊗̂πY ,Z)
∥⋅∥
= L(X ⊗̂πY ,Z).

⋆ [R. Aron, C. Finet and E. Werner, 1995] If X ,Y have
the RNP, then X ⊗̂πY has property A.
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Operators defined on X ⊗̂πY

(D., Kirme and Jung, 2024)

⋆ Property quasi-α

⋆ Property quasi-β

⋆ Property α

⋆ Property β

⋆ Lindenstrauss property A

⋆ Lindenstrauss property B

⋆ Uniformly strongly exposed points

⋆ Residuality

Sheldon Gil Dantas Norm-attaining tensors



Open Questions and New Directions
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Open Questions

⋆ Let X be reflexive and Y be finite dimensional Banach
spaces. Is every tensor in X ⊗̂πY norm-attaining?

[Godefroy, 2015] If X = L1(T), where T is the unit circle
equipped with the Haar measure and Y is the 2-dimensional
Hilbert space ℓ22, we have that

NAπ(L1(T)⊗ ℓ22) /= L1(T)⊗ ℓ22.

[D., Garćıa-Lirola, Jung, Rueda Zoca, 2023]

Let X be a Banach space such that BX = co({x1, . . . , xn}) for some
x1, . . . , xn ∈ SX and assume that Y is a predual space. Then,

NAπ(X ⊗̂πY ) = X ⊗̂πY .
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Open Questions

⋆ Let X be reflexive and Y be finite dimensional Banach
spaces. Is every tensor in X ⊗̂πY norm-attaining?

⋆ (Nuclear Operators) Are there Banach spaces X and Y so
that NAN (X ,Y) is not dense in N (X ,Y)?

⋆ (Symmetric tensors) Is there a Banach space X so that
NAπ,s,N(⊗̂π,s,NX ) is not dense in ⊗̂π,s,NX ?

New Directions

⋆ (D.L. Rodŕıguez-Vidanes) How about lineability properties
for the subset of non-norm-attaining tensors?

⋆ (D., Kirme, Jung) To define a Bollobás type theorem for
tensors (in the sense of [Acosta, Aron, Garćıa, Maestre])?
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Thank You
For Your Attention

and wait! There is more... ✌
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