
The Daugavet property is equivalent to the
polynomial Daugavet property

Sheldon Gil Dantas

Facultad de Ciencias
Departamento de Análisis Matemático
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⋆ What results do we have?
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In what world will we be
working?
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(Homogeneous) Polynomials

Let X ,Y be Banach spaces over K and N ∈ N.

A mapping P from
X into Y is called an N-homogeneous polynomial if we can find
an N-linear symmetric map F : XN → Y (meaning that

F (xσ(1), . . . , xσ(N)) = F (x1, . . . , xN)

holds true for every permutation σ of {1, . . . ,N} and for every
N-tuple (x1, . . . , xN) ∈ XN) such that

P(x) = F (x , . . . , x)

for every x ∈ X .

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



(Homogeneous) Polynomials

Let X ,Y be Banach spaces over K and N ∈ N. A mapping P from
X into Y is called an N-homogeneous polynomial

if we can find
an N-linear symmetric map F : XN → Y (meaning that

F (xσ(1), . . . , xσ(N)) = F (x1, . . . , xN)

holds true for every permutation σ of {1, . . . ,N} and for every
N-tuple (x1, . . . , xN) ∈ XN) such that

P(x) = F (x , . . . , x)

for every x ∈ X .

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



(Homogeneous) Polynomials

Let X ,Y be Banach spaces over K and N ∈ N. A mapping P from
X into Y is called an N-homogeneous polynomial if we can find
an N-linear symmetric map F : XN → Y

(meaning that

F (xσ(1), . . . , xσ(N)) = F (x1, . . . , xN)

holds true for every permutation σ of {1, . . . ,N} and for every
N-tuple (x1, . . . , xN) ∈ XN) such that

P(x) = F (x , . . . , x)

for every x ∈ X .

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



(Homogeneous) Polynomials

Let X ,Y be Banach spaces over K and N ∈ N. A mapping P from
X into Y is called an N-homogeneous polynomial if we can find
an N-linear symmetric map F : XN → Y (meaning that

F (xσ(1), . . . , xσ(N)) = F (x1, . . . , xN)

holds true for every permutation σ of {1, . . . ,N} and for every
N-tuple (x1, . . . , xN) ∈ XN) such that

P(x) = F (x , . . . , x)

for every x ∈ X .

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



(Homogeneous) Polynomials

⋆ P(NX ,Y ) = N-homogeneous polynomials from X into Y 12.

⋆ P(X ,Y ) = all (continuous) polynomials of the form

P =
m∑

k=0

Pk

where Pk ∈ P(kX ,Y ) for every k = 0, 1, . . . ,m.

⋆ P(X ) = all scalar-valued continuous polynomials on X .

• In P(X ,Y ), we define

∥P∥ := sup
x∈BX

∥P(x)∥ (P ∈ P(X ,Y )).

11-homogeneous polynomials are the linear operators
20-homogeneous polynomials are the constant maps
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(Homogeneous) Polynomials

⋆ A polynomial P ∈ P(X ,Y ) is said to be weakly compact if
P(BX ) is a relatively weakly compact3 subset of Y .

⋆ A polynomial P is a rank-one if P(x) = p(x)y0 for every
x ∈ X , where p ∈ P(X ) and y0 ∈ Y .

3if its closure is weakly compact
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(Homogeneous) Polynomials

(Personal) relevant references about this topic:

@ S. Dineen, Complex Analysis on infinite dimensional spaces

@ J. Mujica, Complex analysis in Banach spaces

@ P. Hájek and M. Johanis, Smooth Analysis in Banach spaces
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What property are we
considering?
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The Daugavet property

Daugavet property (DPr, for short)

X has the DPr if the norm equality

∥ Id+T∥ = 1 + ∥T∥

holds for all rank-one bounded linear operators on X .

Equivalently, for all weakly compact linear operatorsa on X .

aT : X → Y is weakly compact if T (BX ) is a weakly compact set in Y

⋆ C (K ) with K perfect4 [Daugavet, ’63]

⋆ L1(µ) with µ atomless [Lozanovskii, ’66]

⋆ Some Banach algebras of holomorphic functions on Banach
spaces [Wojtaszczyk, ’92], [Werner, ’97], [Jung, ’23]

4If it is closed and has no isolated points.
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The Daugavet property

⋆ Considerable attention has been devoted to this isometric
property, which has several notable consequences on the
isomorphic structure of the underlying Banach space.

Recent reference

V. Kadets, M. Mart́ın, A. Rueda Zoca, D. Werner
Banach spaces with the Daugavet property
Preprint
2025
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The Daugavet property

Surprising results

9 If X ∈ DPr, then X fails the RNP.

⋆ Actually, every combination of slices of BX has diameter 2.
⇒ Every Banach space with the DPr is infinite-dimensional.
⇒ Reflexive spaces cannot have the DPr.

9 If X ∈ DPr, then X has a subspace isomorphic to ℓ1.

9 If X ∈ DPr, then X ∗ is neither strictly convex nor smooth.

⋆ Is there a strictly convex Banach space with the DPr?
⋆ Is there a smooth Banach space with the DPr?

9 If X ∗ ∈ DPr, then X ∈ DP.

9 C [0, 1]∗ ̸∈ DPr.
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The Daugavet property

Still surprising results (the most surprising?)

V. Kadets, R. Shvidkoy, G. Sirotkin, D. Werner, TAMS, 2000

X has the DPr if and only if BX is equal to the closed convex hull
of the set

{y ∈ BX : ∥x + y∥ > 2− ε}

for every x ∈ BX and ε > 0. In other words, for every x ∈ SX and
every slicea S of BX , we have

sup
y∈S

∥x + y∥ = 2.

aFor x∗ ∈ X ∗ and ε > 0, a slice of a set A is a set of the form

S(A, x∗, ε) = {x ∈ A : x∗(x) > x∗(A)− ε}.
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The Daugavet property

The above characterization was refined by R. Shvidkoy.

Shvidkoy’s lemma

Let X be a Banach space with the DPr. Then, for every x ∈ SX
and ε > 0, the set

{y ∈ BX : ∥x + y∥ > 2− ε}

is weakly dense in BX . In other words, for x ∈ SX and y ∈ BX , we
can find a net (yα) in BX such that

yα
w−→ y and ∥x + yα∥ → 2.

⋆ A lot of results on the DPr can be proved by using this lemma.
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The (polynomial) Daugavet property

How about the DPr for polynomials?

The polynomial Daugavet property

X has polynomial DPr if every weakly compact polynomial P ∈
P(X ,X ) satisfies

∥ Id+P∥ = 1 + ∥P∥.

Of course, we have that

Polynomial DPr ⇒ DPr

@ Choi, Garćıa, Maestre, Mart́ın, 2007, Studia Math.
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The polynomial Daugavet property

Y.S. Choi, D. Garćıa, M. Maestre, M. Mart́ın, 2007, Studia Math.

Let X be a Banach space. TFAE:

(a) X has the polynomial DPr.

(b) ∀x ∈ SX , ∀ε > 0, ∀P ∈ P(X ,K) with ∥P∥ = 1, ∃y ∈ BX and
∃ω ∈ T (a modulus-one scalar) such that

ReωP(y) > 1− ε and ∥x + ωy∥ > 2− ε.

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



The polynomial Daugavet property
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[M. Mart́ın and A. Rueda Zoca, 2022]

⋆ C ∗-algebras and JB∗-triples
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What kind of problems do
we want to tackle?
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Problem

Is it true that DPr ⇐⇒ polynomial DPr?
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Problem

One could try the following

(1) In view of the geometric characterization of the polynomial
DPr, by Shvidkoy’s characterization, we have the polynomial
DPr from the classical DPr provided that the polynomials we
are working with are weakly continuous on BX .
[D. Cabezas, M. Mart́ın and A.M. Peralta, 2024]

(2) However, it is known that in infinite dimensional Banach spaces,
the only weakly continuous homogeneous polynomials are those
of finite type, that is, of the form

P(x) =
m∑
j=1

αjφ
N
j (x)

with αj ∈ K and φj ∈ X ∗.
[R. Aron and J.B. Prolla, 1980]
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(1) In view of the geometric characterization of the polynomial
DPr, by Shvidkoy’s characterization, we have the polynomial
DPr from the classical DPr provided that the polynomials we
are working with are weakly continuous on BX .
[D. Cabezas, M. Mart́ın and A.M. Peralta, 2024]

(3) In fact, in any Banach space that contains a copy of ℓ1 (in par-
ticular, in any space with the DPr), there are polynomials which
are weakly sequentially continuous but not weakly continuous
on bounded subsets.

[J. Ferrera, J. Gomez Gil and J.L. González Llavona, 1983]
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Problem

Conclusion

From these results in

(1) [D. Cabezas, M. Mart́ın and A.M. Peralta, 2024]

(2) [R. Aron and J.B. Prolla, 1980]

(3) [J. Ferrera, J. Gomez Gil and J.L. González Llavona, 1983]

we cannot expect to get the equivalence between the DPr and the
polynomial DPr as a simple consequence of the characterization due
to Shvidkoy’s.
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Problem

The general strategy used so far

⋆ Polynomials need not to be weakly sequentially continuous.
(take the polynomial x 7→ ⟨x , x⟩ on a Hilbert space)

⋆ If X has the Dunford-Pettis property5, then all polynomials
on X are weakly sequentially continuous.
[Dineen, Complex Analysis on Infinite-Dimensional Spaces]

⋆ In the previous results:

⋆ Construct approximating sequences in the space or its bidual
⋆ Use the weak sequential continuity of polynomials (or their

Aron-Berner extensions) for theses sequences.

5If every continuous weakly compact operator T : X → Y transforms
weakly compact sets in X into norm-compact sets in Y
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Problem

The general strategy used so far

⋆ One exception: [Cabezas, Mart́ın, Peralta, ’24]

⋆ A completely different topology (the strong∗ topology).
⋆ To show some sequential continuity for polynomials under this

specific topology.

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Problem

The general strategy used so far

⋆ One exception: [Cabezas, Mart́ın, Peralta, ’24]
⋆ A completely different topology (the strong∗ topology).

⋆ To show some sequential continuity for polynomials under this
specific topology.

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Problem

The general strategy used so far

⋆ One exception: [Cabezas, Mart́ın, Peralta, ’24]
⋆ A completely different topology (the strong∗ topology).
⋆ To show some sequential continuity for polynomials under this

specific topology.

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Problem

For instance, how about to use this strategy in Lipschitz-free
spaces?

Thinking at this way, one could:

⋆ Analyze why L1[0, 1] satisfies the polynomial DP.

⋆ Generalize this proof to a broader context.

⋆ Try to adapt this new approach to Lipschitz-free spaces.

First observations:

⋆ It turns out that there two main ingredients in the proof:

• A “weakly sequential” property which yields big distances
• and the Dunford-Pettis on L1[0, 1].
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Problem

Recall that we are dealing here with Lipschitz-free spaces!

We then wonder

when does F(M) have the Dunford-Pettis property (DPP, for
short)?

⋆ If F(M) has the Schur property, then it has the DPP.

⋆ If X is a separable infinite dimensional reflexive space, then
F(X ) cannot have the DPP. Indeed, in this case X is com-
plemented in F(X ) and it is known that a Banach space with
DPP cannot have complemented reflexive spaces.

⋆ In particular, F(ℓ2) fails the DPP.

⋆ It is not known whether F(Rn) has the DPP or not.
(Antońın Procházka private communication)
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(Antońın Procházka private communication)

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Problem

Recall that we are dealing here with Lipschitz-free spaces!
We then wonder

when does F(M) have the Dunford-Pettis property (DPP, for
short)?

⋆ If F(M) has the Schur property, then it has the DPP.

⋆ If X is a separable infinite dimensional reflexive space, then
F(X ) cannot have the DPP. Indeed, in this case X is com-
plemented in F(X ) and it is known that a Banach space with
DPP cannot have complemented reflexive spaces.

⋆ In particular, F(ℓ2) fails the DPP.

⋆ It is not known whether F(Rn) has the DPP or not.
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Perhaps it’s time to change our approach!

What do we do?

(1) To work directly with the natural topology on the unit ball
induced by the polynomials: the weak polynomial topology.

(2) To get a Shvidkoy’s lemma for the weak polynomial topology.

(3) Then, we will have DPr ⇔ polynomial DPr.

(4) Some consequences.
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What results do we have?
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The tool(s)

[T.K. Carne, B. Cole and T.W. Gamelin, TAMS, 1989]

The weak polynomial topology on a Banach space X

is the small-
est topology on X which makes all the scalar-valued polynomials
on X continuous. Equivalently, it is the smallest topology on X for
which a net (xα) in X converges to a point x ∈ X if and only if
p(xα) −→ p(x) for every p ∈ P(X ).

[A.M. Davie and T.W. Gamelin, Proc. Amer. Math. Soc., 1989]

The polynomial-star topology of X ∗∗ is the smallest topology on
X ∗∗ for which a net (xα) in X ∗∗ converges to a point x in X ∗∗ if
and only if p̂(xα) −→ p̂(x) for every scalar-valued polynomial p on
X , where p̂ denotes the Aron-Berner extensiona of p to X ∗∗.

a[R.M. Aron and P.D. Berner, 1978]
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The tool(s)

[A.M. Davie and T.W. Gamelin, Theorem 2, 1989]

BX∗∗ is equal to the polynomial-star closure of BX in X ∗∗.

⋆ This provides a polynomial-star Goldstine theorem.

⋆ We will use the ideas of the proof of this result.
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Our results

[S. D., M. Mart́ın, Y. Perreau, Main result, 2025+]
(Shvidkoy’s lemma for the weak polynomial topology)

Let X be a Banach space with the DPr.

Then, for every x ∈ SX and
y ∈ BX , we can find a net (yα) ⊆ BX which converges to y in the
weak polynomial topology of BX and such that ∥x + yα∥ → 2.

[S. D., M. Mart́ın, Y. Perreau, Corollary, 2025+]

A Banach space X with the DPr satisfies the polynomial DPr.

Recall that TFAE:

(a) X has the polynomial DPr.

(b) ∀x ∈ SX , ∀ε > 0, ∀P ∈ P(X ,K) with ∥P∥ = 1, ∃y ∈ BX and
∃ω ∈ T (a modulus-one scalar) such that

ReωP(y) > 1− ε and ∥x + ωy∥ > 2− ε.
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Our results

Proof of the Main Result:

From [DG89], it is enough to prove the
following: given ε ∈ (0, 1), a finite family F of continuous symmetric
multilinear forms on X and N ∈ N large enough so that every F ∈ F
is m-linear for some m ≤ N, we can find y1, . . . , yN ∈ BX such that∥∥∥∥∥x +

N∑
i=1

yi

∥∥∥∥∥ > N + 1− ε

N + 1
(1)

and
|F (yi1 , . . . , yim)− F (y , . . . , y)| < ε (2)

for every m-linear form F ∈ F and for every i1 < · · · < im ∈
{1, . . . ,N}.
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Our results

Proof of the Main Result: AS in [DG89], we construct the points yi
inductively.

Let N ∈ N be as above, fix ε > 0 and let

ξ :=
ε

N(N + 1)
.

Claim: We will construct y1, . . . , yN such that, for every n ∈ {1, . . . ,N},∥∥∥∥∥x +
N∑
i=1

yi

∥∥∥∥∥ > n + 1− nξ and

|F (yi1 , . . . , yik−1
, yik , y , . . . , y)− F (yi1 , . . . , yik−1

, y , y , . . . , y)| < ε

N

for every m-linear symmetric form F ∈ F , every k ≤ m and every
i1 < · · · < ik ≤ n.
Proof of the Claim: Use Shvidkoy’s lemma twice!
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Our results

Proof of the Main Result: Proving the claim, we have that∥∥∥∥∥x +
N∑
i=1

yi

∥∥∥∥∥ > N + 1− Nξ = N + 1− ε

N + 1

and, on the other hand, given any m-linear symmetric form F ∈ F
and i1 < · · · < im ∈ {1, . . . ,N} we have∣∣F (yi1 , . . . , yim)− F (y , . . . , y)

∣∣ < · · · < m · ε

N
≤ ε

as we are done. □

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Our results

Proof of the Main Result: Proving the claim, we have that∥∥∥∥∥x +
N∑
i=1

yi

∥∥∥∥∥ > N + 1− Nξ = N + 1− ε

N + 1

and, on the other hand, given any m-linear symmetric form F ∈ F
and i1 < · · · < im ∈ {1, . . . ,N} we have

∣∣F (yi1 , . . . , yim)− F (y , . . . , y)
∣∣ < · · · < m · ε

N
≤ ε

as we are done. □

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Our results

Proof of the Main Result: Proving the claim, we have that∥∥∥∥∥x +
N∑
i=1

yi

∥∥∥∥∥ > N + 1− Nξ = N + 1− ε

N + 1

and, on the other hand, given any m-linear symmetric form F ∈ F
and i1 < · · · < im ∈ {1, . . . ,N} we have∣∣F (yi1 , . . . , yim)− F (y , . . . , y)

∣∣ < · · · < m · ε

N
≤ ε

as we are done. □

Sheldon Gil Dantas The DPr is equivalent to the polynomial DPr



Thank you very much for
your attention!
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