Lineability of the non-norm-attaining operators

**S.D.**, J. Falcó, M. Jung, D. Rodríguez

On the Bollobás theorem for invariant groups

**S.D.**, J. Falcó, M. Jung, Ó. Roldán

Phi-properties

**S.D.**, M. Jung, J.T. Rodríguez, M. Mazzitelli *(2022)*

*↓↓↓ IDEAS FOR THE FUTURE ↓↓↓*

w- and w^*-denseness of norm-attaining

G. Choi,** S.D.**, M. Jung

Randon-Nikodým property and functions that attain their weighted norms

**S.D.**, R. Medina

Strong Subdifferentiability

*Is it true that the Banach space P(^2 \c_0, \K) endowed with the sup norm satisfies the sequential w^*-Kadec-Klee property?*- Is it true the following equivalence? For every Banach space X and Y, we have that X \pten Y is reflexive if and only X \pten Y is SSD

Daugavet and delta points

Lineability

Lipschitz-free spaces

*Let T be the Tsirelson’ space. The space F(T) contains \ell_2? How about c_0?**The same question for James’ spaces.*

Renorming

*Does c_0 admite a renorming \|.\| such that (c_0, \|.\|) is a square space?*

Daugavet property

*The weighted Banach space H_v(X,Y) satisfies the Daugavet property?*

Norm-attaining theory

- Norm-attaining tensors and integral operators
- Anti-Bollobás
- Local properties for compact operators and its relation with SSD